Last time I described an easy way for you to determine the size of the Moon — easier than the famous techniques used by the classical Greeks. (We don’t need to know the Earth’s circumference, as they did, if we’re ok with a moderately precise estimate.) Once you’ve done that, there’s an simple method, well known since classical times, for figuring out how far away the Earth’s companion is. That’s what I’ll describe in this short post.
(What’s not so easy is to determine the distance and size of the Sun. The classical Greeks failed in their efforts. We’ll need a more modern approach… but that’s for next week.)
Size Versus Distance
Even the early classical Greeks knew something about the Sun, just from the fact that the Moon and Sun appear roughly the same size to our eyes — that is, they occupy about the same amount of sky. If the Sun is twice as far away as the Moon, its diameter must be twice as big, in order that it appear the same size. That’s illustrated in the figure below. If it is ten times as far away, its diameter must be ten times as big. If it’s four hundred times as far away, its diameter is four hundred times as big. (Spoiler: that last one’s the truth; but we’ll get to it later.)
You can run this logic in the other direction; if something perfectly blocks the Moon, then if it’s ten times closer than the Moon its diameter must be ten times smaller. If it’s a billion times closer than the Moon, it must be a billion times smaller.
(more…)