Beyond the Book: The Ambiguities of Scientific Language

Personally, I think that popular science books ought to devote more pages to the issue of how language is used in science. The words scientists choose are central to communication and miscommunication both among researchers and between scientists and non-scientists. The problem is that all language is full of misnomers and contradictory definitions, and scientific language is no exception.

One especially problematic scientific word is “matter.” It has multiple and partly contradictory meanings within particle physics, astronomy and cosmology. For instance,

  • (Quote) It’s not even clear that “dark matter,” a term used widely by astronomers and particle physicists alike, is actually matter.
  • (Endnote) Among possible dark matter particles are axions and dark photons, neither of which would obviously qualify as “matter.”*

Why might one not view them as matter?

Read more

Mass, Weight, and Fields

Today a reader asked me “Out of the quantum fields which have mass, do any of them also have weight?” I thought other readers would be interested in my answer, so I’m putting it here. (Some of what is discussed below is covered in greater detail in my upcoming book.)

Before we start, we need to rephrase the question, because fields do not have mass.

Read more

New Scientist Covers the Standard Model and Beyond

For those of you who subscribe to New Scientist, their magazine’s cover story this week is a feature entitled “THE AMAZING THEORY OF (ALMOST) EVERYTHING”. In the feature is an overview of the Standard Model (which describes all known fields and particles, excepting gravity, with amazing accuracy, but leaves a plethora of puzzles unaddressed) and includes a final section (edited by Abby Beall) with short articles by six scientists about their current views regarding the Standard Model, among them myself. [This website’s introductory article on the Standard Model is here; see also here.] . . .

Read more

Fusion’s First Good Day on Earth

The fusing of small atomic nuclei into larger ones, with the associated release of particles carrying a lot of motion-energy, is the mechanism that powers the Sun’s furnace, and that of other stars. This was first suspected in the 1920’s, and confirmed in the 1930s. Nuclear fission (the breaking of larger atomic nuclei into smaller … Read more

Physicists Discover String Theory and Extra Dimensions in a Laboratory!

With a headline like that, you probably think this is a parody. But in fact, I’m dead serious. Not only that, the discovery was made in the 1960s.  Due to an accident of history, the physicists involved just didn’t realize it back then.

That said, there are profound problems with this headline.  But the headlines we’ve seen this week, along the lines that “Physicists create a baby wormhole in the laboratory”, are actually WORSE than this one. 

It is more accurate to say that “string theory and extra dimensions were discovered experimentally in the 1960s” than to say that “a baby wormhole was created in a lab in the early 2020s.” 

And now I’m going to show you why. As you’ll see in this post and the next, the two claims are related.

Read more

In Brief: Unfortunate News from the Moon

Sadly, the LunaH-MAP mini-satellite (or “CubeSat”) that I wrote about a couple of days ago, describing how it would use particle physics to map out the water-ice in lunar soil, has had a serious setback and may not be able to carry out its mission. A stuck valve is the most likely reason that its … Read more

The Artemis Rocket Launch and Particle Physics

A post for general readers:

The recent launch of NASA’s new moon mission, Artemis 1, is mostly intended to demonstrate that NASA’s incredibly expensive new rocket system will actually work and be safe for humans to travel in. But along the way, a little science will be done. The Orion spacecraft at the top of the giant rocket, which will actually make the trip to the Moon and back and will carry astronauts in future missions, has a few scientific instruments of its own. Not surprisingly, though, most are aimed at monitoring the environment that future astronauts will encounter. But meanwhile the mission is delivering ten shoe-box-sized satellites (“CubeSats“) which will carry out various other scientific and/or technological investigations. A number of these involve physics, and a few directly employ particle physics.

The use of particle physics detectors for the purpose of studying the not-so-empty space around the Moon and Earth is no surprise. Near any star like the Sun, what we think of as the vacuum of space (and biologically speaking, it is vacuum: no air and hardly any atoms, making it unsurvivable as well as silent) is actually swarming with subatomic particles. Well, perhaps “swarming” is an overstatement. But nevertheless, if you want to understand the challenges to humans and equipment in the areas beyond the Earth, you’ll inevitably be doing particle physics. That’s what a couple of the CubeSats will be studying, entirely or in part.

What’s more of a surprise is that one of the best ways to find water on the Moon without actually landing on it involves putting particle physics to use. Although the technique is not new, it’s not so obvious or widely known, so I thought I’d draw your attention to it.

Read more

W boson mass too high? Charm quarks in the proton? There’s a (worrisome) link.

Two of the most widely reported stories of the year in particle physics,

both depend crucially on our understanding of the fine details of the proton, as established to high precision by the NNPDF collaboration itself.  This large group of first-rate scientists starts with lots of data, collected over many years and in many experiments, which can give insight into the proton’s contents. Then, with a careful statistical analysis, they try to extract from the data a precision picture of the proton’s internal makeup (encoded in what is known as “Parton Distribution Functions” — that’s the PDF in NNPDF).  

NNPDF are by no means the first group to do this; it’s been a scientific task for decades, and without it, data from proton colliders like the Large Hadron Collider couldn’t be interpreted.   Crucially, the NNPDF group argues they have the best and most modern methods for the job  — NN stands for “neural network”, so it has to be good, right? 😉 — and that they carry it out at higher precision than anyone has ever done  before.

But what if they’re wrong? Or at least, what if the uncertainties on their picture of the proton are larger than they say?  If the uncertainties were double what NNPDF believes they are, then the claim of excess charm quark/anti-quark pairs in the proton — just barely above detection at 3 standard deviations — would be nullified, at least for now.  And even the claim of the W boson mass being different from the theoretical prediction,  which was argued to be a 7 standard deviation detection, far above “discovery” level, is in some question. In that mass measurement, the largest single source of systematic uncertainty is from the parton distribution functions.  A mere doubling of this uncertainty would reduce the discrepancy to 5 standard deviations, still quite large.  But given the thorny difficulty of the W mass measurement, any backing off from the result would certainly make people more nervous about it… and they are already nervous as it stands. (Some related discussion of these worries appeared in print here, with an additional concern here.)

In short, a great deal, both current and future, rides on whether the NNPDF group’s uncertainties are as small as they think they are.  How confident can we be?

Read more

%d bloggers like this: