Fusion’s First Good Day on Earth

The fusing of small atomic nuclei into larger ones, with the associated release of particles carrying a lot of motion-energy, is the mechanism that powers the Sun’s furnace, and that of other stars. This was first suspected in the 1920’s, and confirmed in the 1930s. Nuclear fission (the breaking of larger atomic nuclei into smaller … Read more

Physicists Discover String Theory and Extra Dimensions in a Laboratory!

With a headline like that, you probably think this is a parody. But in fact, I’m dead serious. Not only that, the discovery was made in the 1960s.  Due to an accident of history, the physicists involved just didn’t realize it back then.

That said, there are profound problems with this headline.  But the headlines we’ve seen this week, along the lines that “Physicists create a baby wormhole in the laboratory”, are actually WORSE than this one. 

It is more accurate to say that “string theory and extra dimensions were discovered experimentally in the 1960s” than to say that “a baby wormhole was created in a lab in the early 2020s.” 

And now I’m going to show you why. As you’ll see in this post and the next, the two claims are related.

Read more

In Brief: Unfortunate News from the Moon

Sadly, the LunaH-MAP mini-satellite (or “CubeSat”) that I wrote about a couple of days ago, describing how it would use particle physics to map out the water-ice in lunar soil, has had a serious setback and may not be able to carry out its mission. A stuck valve is the most likely reason that its … Read more

The Artemis Rocket Launch and Particle Physics

A post for general readers:

The recent launch of NASA’s new moon mission, Artemis 1, is mostly intended to demonstrate that NASA’s incredibly expensive new rocket system will actually work and be safe for humans to travel in. But along the way, a little science will be done. The Orion spacecraft at the top of the giant rocket, which will actually make the trip to the Moon and back and will carry astronauts in future missions, has a few scientific instruments of its own. Not surprisingly, though, most are aimed at monitoring the environment that future astronauts will encounter. But meanwhile the mission is delivering ten shoe-box-sized satellites (“CubeSats“) which will carry out various other scientific and/or technological investigations. A number of these involve physics, and a few directly employ particle physics.

The use of particle physics detectors for the purpose of studying the not-so-empty space around the Moon and Earth is no surprise. Near any star like the Sun, what we think of as the vacuum of space (and biologically speaking, it is vacuum: no air and hardly any atoms, making it unsurvivable as well as silent) is actually swarming with subatomic particles. Well, perhaps “swarming” is an overstatement. But nevertheless, if you want to understand the challenges to humans and equipment in the areas beyond the Earth, you’ll inevitably be doing particle physics. That’s what a couple of the CubeSats will be studying, entirely or in part.

What’s more of a surprise is that one of the best ways to find water on the Moon without actually landing on it involves putting particle physics to use. Although the technique is not new, it’s not so obvious or widely known, so I thought I’d draw your attention to it.

Read more

W boson mass too high? Charm quarks in the proton? There’s a (worrisome) link.

Two of the most widely reported stories of the year in particle physics,

both depend crucially on our understanding of the fine details of the proton, as established to high precision by the NNPDF collaboration itself.  This large group of first-rate scientists starts with lots of data, collected over many years and in many experiments, which can give insight into the proton’s contents. Then, with a careful statistical analysis, they try to extract from the data a precision picture of the proton’s internal makeup (encoded in what is known as “Parton Distribution Functions” — that’s the PDF in NNPDF).  

NNPDF are by no means the first group to do this; it’s been a scientific task for decades, and without it, data from proton colliders like the Large Hadron Collider couldn’t be interpreted.   Crucially, the NNPDF group argues they have the best and most modern methods for the job  — NN stands for “neural network”, so it has to be good, right? 😉 — and that they carry it out at higher precision than anyone has ever done  before.

But what if they’re wrong? Or at least, what if the uncertainties on their picture of the proton are larger than they say?  If the uncertainties were double what NNPDF believes they are, then the claim of excess charm quark/anti-quark pairs in the proton — just barely above detection at 3 standard deviations — would be nullified, at least for now.  And even the claim of the W boson mass being different from the theoretical prediction,  which was argued to be a 7 standard deviation detection, far above “discovery” level, is in some question. In that mass measurement, the largest single source of systematic uncertainty is from the parton distribution functions.  A mere doubling of this uncertainty would reduce the discrepancy to 5 standard deviations, still quite large.  But given the thorny difficulty of the W mass measurement, any backing off from the result would certainly make people more nervous about it… and they are already nervous as it stands. (Some related discussion of these worries appeared in print here, with an additional concern here.)

In short, a great deal, both current and future, rides on whether the NNPDF group’s uncertainties are as small as they think they are.  How confident can we be?

Read more

An Extraordinarily Productive Visit to Fermilab

This has been an exceptional few days, and I’ve had no time to breathe, much less blog. In pre-covid days, visits to the laboratories at CERN or Fermilab were always jam-packed with meetings, both planned and spontaneous, and with professional talks by experts visiting the labs. But many things changed during the pandemic. The vitality … Read more

A Week On Topic at Fermilab

The blog’s been quiet recently, thanks to a series of unfortunate events, not the least of which were my first (known) Covid-19 infection and an ongoing struggle with a bureaucracy within the government of Massachusetts. But meanwhile there is some good news: it seems I will someday have a book published. More on that another time.

Meanwhile I have also been doing some science. Recent efforts included presenting at a workshop on the potential capabilities of the Future Circular Collider [FCC], a possible successor to the Large Hadron Collider [LHC]. Honestly, my own feeling is that the FCC is an unfortunate distraction from important LHC activities. For my part I remain focused on the latter, and on trying to remind everyone just how much remains to do with the LHC data sets from previous years.

Visiting the LPC at Fermilab

Toward that end, I’ll be at the Fermilab National Accelerator this week, near Chicago. I’ll be visiting their LHC Physics Center [LPC], which is the major US hub for the CMS experiment at the LHC. (CMS is one of the LHC’s two general purpose experiments, the other being ATLAS; these are the experiments that discovered the Higgs particle.)

Read more

Protons and Charm Quarks: A Lesson From Virtual Particles

There’s been a lot of chatter lately about a claim that charm quarks are found in protons. While the evidence for this claim of “intrinsic charm” (a name that goes back decades) is by no means entirely convincing yet, it might in fact be true… sort of. But the whole idea sounds very confusing. A charm quark has a larger mass than a proton: about 1.2 GeV/c2 vs. 0.938 GeV/c2. On the face of it, suggesting there are charm quarks in protons sounds as crazy as suggesting that a football could have a lead brick inside it without you noticing any difference.

What’s really going on? It’s a long story, and subtle even for experts, so it’s not surprising that most articles about it for lay readers haven’t been entirely clear. At some point I’ll write a comprehensive explanation, but that will require a longer post (or series of posts), and I don’t want to launch into that until my conceptual understanding of important details is complete.

Feynman diagram suggesting a photon is sometimes an electron-positron pair.

But in the meantime, here’s a related question: how can a particle with zero mass (zero rest mass, to be precise) spend part of its time as a combination of objects that have positive mass? For instance, a photon [a particle of light, including both visible and invisible forms of light] has zero rest mass. [Note, however, that it has non-zero gravitational mass]. Meanwhile electrons and positrons [the anti-particles of electrons] both have positive rest mass. So what do people mean when they say “A photon can be an electron-positron pair part of the time”? This statement comes with a fancy “Feynman diagram”, in which the photon is shown as the wavy line, time is running left to right, and the loop represents an electron and a positron created from the photon.

Read more

%d bloggers like this: