An Experience of a Lifetime: My 1999 Eclipse Adventure

Back in 1999 I saw a total solar eclipse in Europe, and it was a life-altering experience.  I wrote about it back then, but was never entirely happy with the article.  This week I’ve revised it.  It could still benefit from some editing and revision (comments welcome), but I think it’s now a good read.  It’s full of intellectual observations, but there are powerful emotions too.

If you’re interested, you can read it as a pdf, or just scroll down.

 

 

A Luminescent Darkness: My 1999 Eclipse Adventure

© Matt Strassler 1999

After two years of dreaming, two months of planning, and two hours of packing, I drove to John F. Kennedy airport, took the shuttle to the Air France terminal, and checked in.  I was brimming with excitement. In three days time, with a bit of luck, I would witness one the great spectacles that a human being can experience: a complete, utter and total eclipse of the Sun.

I had missed one eight years earlier. In July 1991, a total solar eclipse crossed over Baja California. I had thought seriously about driving the fourteen hundred miles from the San Francisco area, where I was a graduate student studying theoretical physics, to the very southern tip of the peninsula. But worried about my car’s ill health and scared by rumors of gasoline shortages in Baja, I chickened out. Four of my older colleagues, more worldly and more experienced, and supplied with a more reliable vehicle, drove down together. When they returned, exhilarated, they regaled us with stories of their magical adventure. Hearing their tales, I kicked myself for not going, and had been kicking myself ever since. Life is not so long that such opportunities can be rationalized or procrastinated away.

A total eclipse of the Sun is a event of mythic significance, so rare and extraordinary and unbelievable that it really ought to exist only in ancient legends, in epic poems, and in science fiction stories. There are other types of eclipses — partial and total eclipses of the Moon, in which the Earth blocks sunlight that normally illuminates the Moon, and various eclipses of the Sun in which the Moon blocks sunlight that normally illuminates the Earth. But total solar eclipses are in a class all their own. Only during the brief moments of totality does the Sun vanish altogether, leaving the shocked spectator in a suddenly darkened world, gazing uncomprehendingly at a black disk of nothingness.

Our species relies on daylight. Day is warm; day grows our food; day permits travel with a clear sense of what lies ahead. We are so fearful of the night — of what lurks there unseen, of the sounds that we cannot interpret. Horror films rely on this fear; demons and axe murderers are rarely found walking about in bright sunshine. Dark places are dangerous places; sudden unexpected darkness is worst of all. These are the conventions of cinema, born of our inmost psychology. But the Sun and the Moon are not actors projected on a screen. The terror is real.

It has been said that if the Earth were a member of a federation of a million planets, it would be a famous tourist attraction, because this home of ours would be the only one in the republic with such beautiful eclipses. For our skies are witness to a coincidence truly of cosmic proportions. It is a stunning accident that although the Sun is so immense that it could hold a million Earths, and the Moon so small that dozens could fit inside our planet, these two spheres, the brightest bodies in Earth’s skies, appear the same size. A faraway giant may seem no larger than a nearby child. And this perfect match of their sizes and distances makes our planet’s eclipses truly spectacular, visually and scientifically. They are described by witnesses as a sight of weird and unique beauty, a visual treasure completely unlike anything else a person will ever see, or even imagine.

But total solar eclipses are uncommon, occurring only once every year or two. Even worse, totality only occurs in a narrow band that sweeps across the Earth — often just across its oceans. Only a small fraction of the Earth sees a total eclipse in any century. And so these eclipses are precious; only the lucky, or the devoted, will experience one before they die.

In my own life, I’d certainly been more devoted than lucky. I knew it wasn’t wise to wait for the Moon’s shadow to find me by chance. Instead I was going on a journey to place myself in its path.

The biggest challenge in eclipse-chasing is the logistics. The area in which totality is visible is very long but very narrow. For my trip, in 1999, it was a long strip running west to east all across Europe, but only a hundred miles wide from north to south. A narrow zone crossing heavily populated areas is sure to attract a massive crowd, so finding hotels and transport can be difficult. Furthermore, although eclipses are precisely predictable, governed by the laws of gravity worked out by Isaac Newton himself, weather and human beings are far less dependable.

But I had a well-considered plan. I would travel by train to a small city east of Paris, where I had reserved a rental car. Keeping a close watch on the weather forecast, I would drive on back roads, avoiding clogged highways. I had no hotel reservations. It would have been pointless to make them for the night before the event, since it was well known that everything within two hours drive of the totality zone was booked solid. Moreover, I wanted the flexibility to adjust to the weather and couldn’t know in advance where I’d want to stay. So my idea was that on the night prior to the eclipse, I would drive to a good location in the path of the lunar shadow, and sleep in the back of my car. I had a sleeping bag with me to keep me warm, and enough lightweight clothing for the week — and not much else.

Oh, it was such a good plan, clean and simple, and that’s why my heart had so far to sink and my brain so ludicrous a calamity to contemplate when I checked my wallet, an hour before flight time, and saw a gaping black emptiness where my driver’s license was supposed to be. I was struck dumb. No license meant no car rental; no car meant no flexibility and no place to sleep. Sixteen years of driving and I had never lost it before; why, why, of all times, now, when it was to play a central role in a once-in-a-lifetime adventure?

I didn’t panic. I walked calmly back to the check-in counters, managed to get myself rescheduled for a flight on the following day, drove the three hours back to New Jersey, and started looking. It wasn’t in my car. Nor was it in the pile of unneeded items I’d removed from my wallet. Not in my suitcase, not under my bed, not in my office. As it was Sunday, I couldn’t get a replacement license. Hope dimmed, flickered, and went dark.

Deep breaths. Plan B?

I didn’t have a tent, and couldn’t easily have found one. But I did have a rain poncho, large enough to keep my sleeping bag off the ground. As long as it didn’t rain too hard, I could try, the night before the eclipse, to find a place to camp outdoors; with luck I’d find lodging for the other nights. I doubted this would be legal, but I was willing to take the chance. But what about my suitcase? I couldn’t carry that around with me into the wilderness. Fortunately, I knew a solution. For a year after college, I had studied music in France, and had often gone sightseeing by rail. On those trips I had commonly made use of the ubiquitous lockers at the train stations, leaving some luggage while I explored the nearby town. As for flexibility of location, that was unrecoverable; the big downside of Plan B was that I could no longer adjust to the weather. I’d just have to be lucky. I comforted myself with the thought that the worst that could happen to me would be a week of eating French food.

So the next day, carrying the additional weight of a poncho and an umbrella, but having in compensation discarded all inessential clothing and tourist information, I headed back to the airport, this time by bus. Without further misadventures, I was soon being carried across the Atlantic.

As usual I struggled to nap amid the loud silence of a night flight. But my sleeplessness was rewarded with one of those good omens that makes you think that you must be doing the right thing. As we approached the European coastline, and I gazed sleepily out my window, I suddenly saw a bright glowing light. It was the rising white tip of the thin crescent Moon.

Solar eclipses occur at New Moon, always. This is nothing but simple geometry; the Moon must place itself exactly between the Sun and the Earth to cause an eclipse, and that means the half of the Moon that faces us must be in shadow. (At Full Moon, the opposite is true; the Earth is between the Sun and the Moon, so the half of the Moon that faces us is in full sunlight. That’s when lunar eclipses can occur.) And just before a New Moon, the Moon is close to the Sun’s location in the sky. It becomes visible, as the Earth turns, just before the Sun does, rising as a morning crescent shortly before sunrise. (Similarly, we get an evening crescent just after a New Moon.)

There, out over the vast Atlantic, from a dark ocean of water into a dark sea of stars, rose the delicate thin slip of Luna the lover, on her way to her mystical rendezvous with Sol. Her crescent smiled at me and winked a greeting. I smiled back, and whispered, “see you in two days…” For totality is not merely the only time you can look straight at the Sun and see its crown. It is the only time you can see the New Moon.

We landed in Paris at 6:30 Monday morning, E-day-minus-two. I headed straight to the airport train station, and poured over rail maps and my road maps trying to guess a good location to use as a base. Eventually I chose a medium-sized town with the name Charleville-Mezieres. It was on the northern edge of the totality zone, at the end of a large spoke of the Paris-centered rail system, and was far enough from Paris, Brussels, and all large German towns that I suspected it might escape the worst of the crowds. It would then be easy, the night before the eclipse, to take a train back into the center of the zone, where totality would last the longest.

Two hours later I was in the Paris-East rail station and had purchased my ticket for Charleville-Mezieres. With ninety minutes to wait, I wandered around the station. It was evident that France had gone eclipse-happy. Every magazine had a cover story; every newspaper had a special insert; signs concerning the event were everywhere. Many of the magazines carried free eclipse glasses, with a black opaque metallic material for lenses that only the Sun can penetrate. Warnings against looking at the Sun without them were to be found on every newspaper front page. I soon learned that there had been a dreadful scandal in which a widely distributed shipment of imported glasses was discovered to be dangerously defective, leading the government to make a hurried and desperate attempt to recall them. There were also many leaflets advertising planned events in towns lying in the totality zone, and information about extra trains that would be running. A chaotic rush out of Paris was clearly expected.

Before noon I was on a train heading through the Paris suburbs into the farmlands of the Champagne region. The rocking of the train put me right to sleep, but the shrieking children halfway up the rail car quickly ended my nap. I watched the lovely sunlit French countryside as it rolled by. The Sun was by now well overhead — or rather, the Earth had rotated so that France was nearly facing the Sun head on. Sometimes, when the train banked on a turn, the light nearly blinded me, and I had to close my eyes.

With my eyelids shut, I thought about how I’d managed, over decades, to avoid ever once accidentally staring at the Sun for even a second… and about how almost every animal with eyes manages to do this during its entire life. It’s quite a feat, when you think about it. But it’s essential, of course. The Sun’s ferocious blaze is even worse than it appears, for it contains more than just visible light. It also radiates light too violet for us to see — ultraviolet — which is powerful enough to destroy our vision. Any animal lacking instincts powerful enough to keep its eyes off the Sun will go blind, soon to starve or be eaten. But humans are in danger during solar eclipses, because our intense curiosity can make us ignore our instincts. Many of us will suffer permanent eye damage, not understanding when and how it is safe to look at the Sun… which is almost, but not quite, never.

In fact the only time it is safe to look with the naked eye is during totality, when the Sun’s disk is completely blocked by the New Moon, and the world is dark. Then, and only then, can one see that the Sun is not a sphere, and that it has a sort of atmosphere, immense and usually unseen.

At the heart of the Sun, and source of its awesome power, is its nuclear furnace, nearly thirty million degrees hot and nearly five billion years old. All that heat gradually filters and boils out of the Sun’s core toward its visible surface, which is a mere six thousand degrees… still white-hot. Outside this region is a large irregular halo of material that is normally too dim to see against the blinding disk. The inner part of that halo is called the chromosphere; there, giant eruptions called “prominences” loop outward into space. The outer part of the halo is the “corona”, Latin for “crown.” The opportunity to see the Sun’s corona is one of the main reasons to seek totality.

Still very drowsy, but in a good mood, I arrived in Charleville. Wanting to leave my bags in the station while I looked for a hotel room, I searched for the luggage lockers. After three tiring trips around the station, I asked at a ticket booth. “Oh,” said the woman behind the desk, “we haven’t had them available since the Algerian terrorism of a few years ago.”

I gulped. This threatened plan B, for what was I to do with my luggage on eclipse day? I certainly couldn’t walk out into the French countryside looking for a place to camp while carrying a full suitcase and a sleeping bag! And even the present problem of looking for a hotel would be daunting. The woman behind the desk was sympathetic, but her only suggestion was to try one of the hotels near the station. Since the tourist information office was a mile away, it seemed the only good option, and I lugged my bags across the street.

Here, finally, luck smiled. The very first place I stopped at had a room for that night, reasonably priced and perfectly clean, if spartan. It was also available the night after the eclipse. My choice of Charleville had been wise. Unfortunately, even here, Eclipse Eve — Tuesday evening — was as bad as I imagined. The hoteliere assured me that all of Charleville was booked (and my later attempts to find a room, even a last-minute cancellation, proved fruitless.) Still, she she was happy for me to leave my luggage at the hotel while I tramped through the French countryside. Thus was Plan B saved.

Somewhat relieved, I wandered around the town. Charleville is not unattractive, and the orange sandstone 16th century architecture of its central square is very pleasing to the eye. By dusk I was exhausted and collapsed on my bed. I slept long and deep, and awoke refreshed. I took a short sightseeing trip by train, ate a delicious lunch, and tried one more time to find a room in Charleville for Eclipse Eve. Failing once again, I resolved to camp in the heart of the totality zone.

But where? I had several criteria in mind. For the eclipse, I wanted to be far from any large town or highway, so that streetlights, often automatically triggered by darkness, would not spoil the experience. Also I wanted hills and farmland; I wanted to be at a summit, with no trees nearby, in order to have the best possible view. It didn’t take long to decide on a location. About five miles south of the unassuming town of Rethel, rebuilt after total destruction in the first world war, my map showed a high hill. It seemed perfect.

Fortunately, I learned just in time that this same high hill had attracted the attention of the local authorities, and they had decided to designate this very place the “official viewing site” in the region. A hundred thousand people were expected to descend on Rethel and take shuttles from the town to the “site.” Clearly this was not where I wanted to be!

So instead, when I arrived in Rethel, I walked in another direction. I aimed for an area a few miles west of town, quiet hilly farmland.

Yet again, my luck seemed to be on the wane. By four it was drizzling, and by five it was raining. Darkness would settle at around eight, and I had little time to find a site for unobtrusive camping, much less a dry one. The rain stopped, restarted, hesitated, spat, but refused to go away. An unending mass of rain clouds could be seen heading toward me from the west. I had hoped to use trees for some shelter against rain, but now the trees were drenched and dripping, even worse than the rain itself.

Still completely unsure what I would do, I continued walking into the evening. I must have cut a very odd figure, carrying an open umbrella, a sleeping bag, and a small black backpack. I took a break in a village square, taking shelter at a church’s side door, where I munched on French bread and cheese. Maybe one of these farmers would let me sleep in a dry spot in his barn, I thought to myself. But I still hadn’t reached the hills I was aiming for, so I kept walking.

After another mile, I came to a hilltop with a dirt farm track crossing the road. There, just off the road to the right, was a large piece of farm machinery. And underneath it, a large, flat, sheltered spot. Hideous, but I could sleep there. Since it wasn’t quite nightfall yet and I could see a hill on the other side of the road along the same track, one which looked like it might be good for watching the eclipse, I took a few minutes to explore it. There I found another piece of farm equipment, also with a sheltered underbelly. This one was much further from the road, looked unused, and presumably offered both safer and quieter shelter. It was sitting just off the dirt track in a fallow field. The field was of thick, sticky, almost hard mud, the kind you don’t slip in and which doesn’t ooze but which gloms onto the sides of your shoe.

And so it was that Eclipse Eve found me spreading my poncho in a friendly unknown farmer’s field, twisting my body so as not to hit my head on the metal bars of my shelter, carefully unwrapping my sleeping bag and removing my shoes so as not to cover everything in mud, brushing my teeth in bottled water, and bedding down for the night. The whole scene was so absurd that I found myself sporting a slightly manic grin and giggling. But still, I was satisfied. Despite the odds, I was in the zone at the appointed time; when I awoke the next morning I would be scarcely two miles from my final destination. If the clouds were against me, so be it. I had done my part.

I slept pretty well, considering both my excitement and the uneven ground. At daybreak I was surrounded by fog, but by 8 a.m.~the fog was lifting, revealing a few spots of blue sky amid low clouds. My choice of shelter was also confirmed; my sleeping bag was dry, and across the road the other piece of machinery I had considered was already in use.

I packed up and started walking west again. The weather seemed uncertain, with three layers of clouds — low stratus, medium cumulus, and high cirrus — crossing over each other. Blue patches would appear, then close up. I trudged to the base of my chosen hill, then followed another dirt track to the top, where I was graced with a lovely view. The rolling paysage of fertile France stretched before me, blotched here and there with sunshine.  Again I had chosen well, better than I realized, as it turned out, for I was not alone on the hill. A Belgian couple had chosen it too — and they had a car…

There I waited. The minutes ticked by. The temperature fluctuated, and the fields changed color, as the Sun played hide and seek. I didn’t need these reminders of the Sun’s importance — that without its heat the Earth would freeze, and without its light, plants would not grow and the cycle of life would quickly end. I thought about how pre-scientific cultures had viewed the Sun. In cultures and religions around the world, the blazing disk has often been attributed divine power and regal authority. And why not? In the past century, we’ve finally learned what the Sun is made from and why it shines. But we are no less in awe than our ancestors, for the Sun is much larger, much older, and much more powerful than most of them imagined.

For a while, I listened to the radio. Crowds were assembling across Europe. Special events — concerts, art shows, contests — were taking place, organized by towns in the zone to coincide with the eclipse. This was hardly surprising. All those tourists had come for totality. But totality is brief, never more than a handful of minutes.  It’s the luck of geometry, the details of the orbits of the Earth and Moon, that set its duration. For my eclipse, the Moon’s shadow was only about a hundred miles wide. Racing along at three thousand miles per hour, it would darken any one location for at most two minutes. Now if a million people are expected to descend on your town for a two-minute event, I suppose it is a good idea to give them something else to do while they wait. And of course, the French cultural establishment loves this kind of opportunity. Multimedia events are their specialty, and they often give commissions to contemporary artists. I was particularly amused to discover later that an old acquaintance of mine — I met him in 1987 at the composers’ entrance exams for the Paris Conservatory — had been commissioned to write an orchestral piece, called “Eclipse,” for the festival in the large city of Reims. It was performed just before the moment of darkness.

Finally, around 11:30, the eclipse began. The Moon nibbled a tiny notch out of the sun. I looked at it briefly through my eclipse glasses, and felt the first butterflies of anticipation. The Belgian couple, in their late fourties, came up to the top of the hill and stood alongside me. They were Flemish, but the man spoke French, and we chatted for a while. It turned out he was a scientist also, and had spent some time in the United States, so we had plenty to talk about. But our discussion kept turning to the clouds, which showed no signs of dissipating. The Sun was often veiled by thin cirrus or completely hidden by thick cumulus. We kept a nervous watch.

Time crawled as the Moon inched across the brilliant disk. It passed the midway point and the Sun became a crescent. With only twenty minutes before totality, my Belgian friends conversed in Dutch. The man turned to me. “We have decided to drive toward that hole in the clouds back to the east,” he said in French. “It’s really not looking so good here. Do you want to come with us?” I paused to think. How far away was that hole? Would we end up back at the town? Would we get caught in traffic? Would we end up somewhere low? What were my chances if I stayed where I was? I hesitated, unsure. If I went with them, I was subject to their whims, not my own. But after looking at the oncoming clouds one more time, I decided my present location was not favorable. I joined them.

We descended the dirt track and turned left onto the road I’d taken so long to walk. It was completely empty. We kept one eye on where we were going and five eyes on the sky. After two miles, the crescent sun became visible through a large gap in the low clouds. There were still high thin clouds slightly veiling it, but the sky around it was a pale blue. We went a bit further, and then stopped… at the very same dirt track where I had slept the night before. A line of ten or fifteen cars now stretched along it, but there was plenty of room for our vehicle.

By now, with ten minutes to go, the light was beginning to change. When only five percent of the Sun remains, your eye can really tell. The blues become deeper, the whites become milkier, and everything is more subdued. Also it becomes noticeably cooler. I’d seen this light before, in New Mexico in 1994. I had gone there to watch an “annular” eclipse of the Sun. An annular eclipse occurs when the Moon passes directly in front of the Sun but is just a bit too far away from the Earth for its shadow to reach the ground. In such an eclipse, the Moon fails to completely block the Sun; a narrow ringlet, or “annulus”, often called the “ring of fire,” remains visible. That day I watched from a mountain top, site of several telescopes, in nearly clear skies. But imagine the dismay of the spectators as the four-and-a-half minutes of annularity were blocked by a five-minute cloud! Fortunately there was a bright spot. For a brief instant — no more than three seconds — the cloud became thin, and a perfect circle of light shone through, too dim to penetrate eclipse glasses but visible with the naked eye… a veiled, surreal vision.

On the dirt track in the middle of French fields, we started counting down the minutes. There was more and more tension in the air. I put faster speed film into my camera. The light became still milkier, and as the crescent became a fingernail, all eyes were focused either on the Sun itself or on a small but thick and dangerous-looking cloud heading straight for it. Except mine. I didn’t care if I saw the last dot of sunlight disappear. What I wanted to watch was the coming of Moon-shadow.

One of my motivations for seeking a hill was that I wanted to observe the approach of darkness. Three thousand miles an hour is just under a mile per second, so if one had a view extending out five miles or so, I thought, one could really see the edge coming. I expected it would be much like watching the shadow of a cloud coming toward me, with the darkness sweeping along the ground, only much darker and faster. I looked to the west and waited for the drama to unfold.

And it did, but it was not what I was expecting. Even though observing the shadow is a common thing for eclipse watchers to do, nothing I had ever read about eclipses prepared me in the slightest for what I was about to witness. I’ve never seen it photographed, or even described. Maybe it was an effect of all the clouds around us. Or maybe others, just as I do, find it difficult to convey.

For how can one relate the sight of daylight sliding swiftly, like an sigh, to deep twilight? of the western sky, seen through scattered clouds, changing seamlessly and inexorably from blue to pink to slate gray to the last yellow of sunset? of colors rising up out of the horizon and spreading across the sky like water from a broken dyke flooding onto a field?

I cannot find the right combination of words to capture the sense of being swept up, of being overwhelmed, of being transfixed with awe, as one might be before the summoning of a great wave or a great wind by the command of a god, yet all in utter silence and great beauty. Reliving it as I write this brings a tear. In the end I have nothing to compare it to.

The great metamorphosis passed. The light stabilized. Shaken, I looked up.

And quickly looked away. I had seen a near-disk of darkness, the fuzzy whiteness of the corona, and some bright dots around the disk’s edge, one especially bright where the Sun still clearly shone through. Accidentally I had seen with my naked eyes the “diamond ring,” a moment when the last brilliant drop of Sun and the glistening corona are simultaneously visible. It’s not safe to look at. I glanced again. Still several bright dots. I glanced again. Still there — but the Sun had to be covered by now…

So I looked longer, and realized that the Sun was indeed covered, that those bright dots were there to stay. There it was. The eclipsed Sun, or rather, the dark disk of the New Moon, surrounded by the Sun’s crown, studded at its edge with seven bright pink jewels. It was bizarre, awe-inspiring, a spooky hallucination. It shimmered.

The Sun’s corona didn’t really resemble what I had seen in photographs, and I could immediately see why. The corona looked as though it were made of glistening white wispy hair, billowing outward like a mop of whiskers. It gleamed with a celestial light, a shine resembling that of well-lit tinsel. No camera could capture that glow, no photograph reproduce it.

But the greatest, most delightful surprise was the seven beautiful gems. I knew they had to be the great eruptions on the surface of the Sun, prominences, huge magnetic storms larger than our planet and more violent than anything else in the solar system. However, nobody ever told me they were bright pink! I always assumed they were orange (silly of me, since the whole Sun looks orange if you look at it through an orange filter, which the photographs always do.) They were arranged almost symmetrically around the sun, with one of them actually well separated from its surface and halfway out into the lovely soft filaments of the corona. I explored them with my binoculars. The colors, the glistening timbre, the rich detail, it is a visual delight. The scene is living, vibrant, delicate and soft; by comparison, all the photographs and films seem dry, flat, deadened.

I was surprised at my calm. After the great rush of the shadow, the stasis of totality had caught me off guard.  Around me it was much lighter than I had expected. The sense was of late twilight, with a deep blue-purple sky; yet it was still bright enough to read by. The yellow light of late sunset stretched all the way around the horizon. The planet Venus was visible, but no stars peeked through the clouds. Perhaps longer eclipses have darker skies, a larger Moon-shadow putting daylight further away.

I had scarcely had time to absorb all of this when, just at the halfway point of totality, the dangerous-looking cumulus cloud finally arrived, and blotted out the view. A groan, but only a half-hearted one, emerged from the spectators; after all we’d seen what we’d come to see. I took in the colors emanating from the different parts of the sky, and then looked west again, waiting for the light to return. A thin red glow touched the horizon. I waited. Suddenly the red began to grow furiously. I yelled “Il revient!” — it is returning! — and then watched in awe as the reds became pinks, swarmed over us, turned yellow-white…

And then… it was daylight again. Normality, or a slightly muted version of it. The magical show was over, heavenly love had been consummated, we who had traveled far had been rewarded. The weather had been kind to us. There was a pause as we savored the experience, and waited for our brains to resume functioning. Then congratulations were passed around as people shook hands and hugged each other. I thanked my Belgian friends, who like me were smiling broadly. They offered me a ride back to town. I almost accepted, but stopped short, and instead thanked them again and told them I somehow wanted to be outside for a while longer. We exchanged addresses, said goodbyes, they drove off.

I started retracing my steps from the previous evening. As I walked back to the town of Rethel in the returning sunshine, the immensity of what I had seen began gradually to make its way through my skin into my blood, making me teary-eyed. I thought about myself, a scientist, educated and knowledgeable about the events that had just taken place, and tried to imagine what would have happened to me today if I had not had
that knowledge and had found myself, unexpectedly, in the Moon’s shadow.

It was not difficult; I had only to imagine what I would feel if the sky suddenly, without any warning, turned a fiery red instead of blue and began to howl. It would have been a living nightmare. The terror that I would have felt would have penetrated my bones. I would have fallen on my knees in panic; I would have screamed and wept; I would have called on every deity I knew and others I didn’t know for help; I would have despaired; I would have thought death or hell had come; I would have assumed my life was about to end. The two minutes of darkness, filled with the screams and cries of my neighbors, would have been timeless, maddening. When the Sun just as suddenly returned, I would have collapsed onto the ground with relief, profusely and weepingly thanking all of the deities for restoring the world to its former condition, and would have rushed home to relatives and friends, hoping to find some comfort and solace.

I would have sought explanations. I would have been willing to consider anything: dragons eating the Sun, spirits seeking to punish our village or country for its transgressions, evil and spiteful monsters trying to freeze the Earth, gods warning us of terrible things to come in future. But above all, I could never, never have imagined that this brief spine-chilling extinction and transformation of the Sun was a natural phenomenon. Nothing so spectacular and sudden and horrifying could have been the work of mere matter. It would once and for all have convinced me of the existence of creatures greater and more powerful than human beings, if I had previously had any doubt.

And I would have been forever changed. No longer could I have entirely trusted the regularity of days and nights, of seasons, of years. For the rest of my life I would have always found myself glancing at the sky, wanting to make sure that all, for the moment, was well. For if the Sun could suddenly vanish for two minutes, perhaps the next time it could vanish for two hours, or two days… or two centuries. Or forever.

I pondered the impact that eclipses, both solar and lunar, have had throughout human history. They have shaped civilizations. Wars and slaughters were begun and ended on their appearance; they sent ordinary people to their deaths as appeasement sacrifices; new gods and legends were invoked to give meaning to them. The need to predict them, and the coincidences which made their prediction possible, helped give birth to astronomy as a mathematically precise science, in China, in Greece, in modern Europe — developments without which my profession, and even my entire technologically-based culture, might not exist.

It was an hour’s walk to Rethel, but that afternoon it was a long journey. It took me across the globe to nations ancient and distant. By the time I reached the town, I’d communed with my ancestors, reconsidered human history, and examined anew my tiny place in the universe.  If I’d been a bit calm during totality itself, I wasn’t anymore. What I’d seen was gradually filtering, with great potency, into my soul.

I took the train back to Charleville, and slept dreamlessly. The next two days were an opportunity to unwind, to explore, and to eat well. On my last evening I returned to Paris to visit my old haunts. I managed to sneak into the courtyard of the apartment house where I had had a one-room garret up five flights of stairs, with its spartan furnishings and its one window that looked over the roofs of Paris to the Eiffel Tower. I wandered past the old Music Conservatory, since moved to the northeast corner of town, and past the bookstore where I bought so much music. My favorite bakery was still open.

That night I slept in an airport hotel, and the next day flew happily home to the American continent. I never did find my driver’s license.

But psychological closure came already on the day following the eclipse. I spent that day in Laon, a small city perched magnificently atop a rocky hill that rises vertically out of the French plains. I wandered its streets and visited its sights — an attractive church, old houses, pleasant old alleyways, ancient walls and gates. As evening approached I began walking about, looking for a restaurant, and I came to the northwestern edge of town overlooking the new city and the countryside beyond. The clouds had parted, and the Sun, looking large and dull red, was low in the sky. I leaned on the city wall and watched as the turning Earth carried me, and Laon, and all of France, at hundreds of miles an hour, intent on placing itself between me and the Sun. Yet another type of solar eclipse, one we call “sunset.”

The ruddy disk touched the horizon. I remembered the wispy white mane and the brilliant pink jewels. In my mind the Sun had always been grand and powerful, life-giver and taker, essential and dangerous. It could blind, burn, and kill.  I respected it, was impressed and awed by it, gave thanks for it, swore at it, feared it. But in the strange light of totality, I had seen beyond its unforgiving, blazing sphere, and glimpsed a softer side of the Sun. With its feathery hair blowing in a dark sky, it had seemed delicate, even vulnerable. It is, I thought to myself, as mortal as we.

The distant French hills rose across its face. As it waned, I found myself feeling a warmth, even a tenderness — affection for this giant glowing ball of hydrogen, this protector of our planet, this lonely beacon in a vast emptiness… the only star you and I will ever know.

Ongoing Chance of Northern (or Southern) Lights

As forecast, the cloud of particles from Friday’s solar flare (the “coronal mass emission”, or “CME”) arrived at our planet a few hours after my last post, early in the morning New York time. If you’d like to know how I knew that it had reached Earth, and how I know what’s going on now, scroll down to the end of this post and I’ll show you the data I was following, which is publicly available at all times.

So far the resulting auroras have stayed fairly far north, and so I haven’t seen any — though they were apparently seen last night in Washington and Wyoming, and presumably easily seen in Canada and Alaska. [Caution: sometimes when people say they’ve been “seen”, they don’t quite mean that; I often see lovely photos of aurora that were only visible to a medium-exposure camera shot, not to the naked eye.]  Or rather, I should say that the auroras have stayed fairly close to the Earth’s poles; they were also seen in New Zealand.

Russia and Europe have a good opportunity this evening. As for the U.S.? The storm in the Earth’s magnetic field is still going on, so tonight is still a definite possibility for northern states. Keep an eye out! Look for what is usually a white or green-hued glow, often in swathes or in stripes pointing up from the northern horizon, or even overhead if you’re lucky.  The stripes can move around quite rapidly.

Now, here’s how I knew all this.  I’m no expert on auroras; that’s not my scientific field at all.   But the U.S. Space Weather Prediction Center at the National Oceanic and Atmospheric Administration, which needs to monitor conditions in space in case they should threaten civilian and military satellites or even installations on the ground, provides a wonderful website with lots of relevant data.

The first image on the site provides the space weather overview; a screenshot from the present is shown below, with my annotations.  The upper graph indicates a blast of x-rays (a form of light not visible to the human eye) which is generated when the solar flare, the magnetically-driven explosion on the sun, first occurs.  Then the slower cloud of particles (protons, electrons, and other atomic nuclei, all of which have mass and therefore can’t travel at light’s speed) takes a couple of days to reach Earth.  It’s arrival is shown by the sudden jump in the middle graph.  Finally, the lower graph measures how active the Earth’s magnetic field is.  The only problem with that plot is it tends to be three hours out of date, so beware of that! A “Kp index” of 5 shows significant activity; 6 means that auroras are likely to be moving away from the poles, and 7 or 8 mean that the chances in a place like the north half of the United States are pretty good.  So far, 6 has been the maximum generated by the current flare, but things can fluctuate a little, so 6 or 7 might occur tonight.  Keep an eye on that lower plot; if it drops back down to 4, forget it, but it it’s up at 7, take a look for sure!

SpaceWxDataJuly162017

Also on the site is data from the ACE satellite.  This satellite sits 950 thousand miles [1.5 million kilometers] from Earth, between Earth and the Sun, which is 93 million miles [150 million kilometers] away.  At that vantage point, it gives us (and our other satellites) a little early warning, of up to an hour, before the cloud of slow particles from a solar flare arrives.  That provides enough lead-time to turn off critical equipment that might otherwise be damaged.  And you can see, in the plot below, how at a certain time in the last twenty-four hours the readings from the satellite, which had been tepid before, suddenly started fluctuating wildly.  That was the signal that the flare had struck the satellite, and would arrive shortly at our location.

ACEDataJuly162017.png

It’s a wonderful feature of the information revolution that you can get all this scientific data yourself, and not wait around hoping for a reporter or blogger to process it for you.  None of this was available when I was a child, and I missed many a sky show.  A big thank you to NOAA, and to the U.S. taxpayers who make their work possible.

 

 

Lights in the Sky (maybe…)

The Sun is busy this summer. The upcoming eclipse on August 21 will turn day into deep twilight and transfix millions across the United States.  But before we get there, we may, if we’re lucky, see darkness transformed into color and light.

On Friday July 14th, a giant sunspot in our Sun’s upper regions, easily visible if you project the Sun’s image onto a wall, generated a powerful flare.  A solar flare is a sort of magnetically powered explosion; it produces powerful electromagnetic waves and often, as in this case, blows a large quantity of subatomic particles from the Sun’s corona. The latter is called a “coronal mass ejection.” It appears that the cloud of particles from Friday’s flare is large, and headed more or less straight for the Earth.

Light, visible and otherwise, is an electromagnetic wave, and so the electromagnetic waves generated in the flare — mostly ultraviolet light and X-rays — travel through space at the speed of light, arriving at the Earth in eight and a half minutes. They cause effects in the Earth’s upper atmosphere that can disrupt radio communications, or worse.  That’s another story.

But the cloud of subatomic particles from the coronal mass ejection travels a few hundred times slower than light, and it takes it about two or three days to reach the Earth.  The wait is on.

Bottom line: a huge number of high-energy subatomic particles may arrive in the next 24 to 48 hours. If and when they do, the electrically charged particles among them will be trapped in, and shepherded by, the Earth’s magnetic field, which will drive them spiraling into the atmosphere close to the Earth’s polar regions. And when they hit the atmosphere, they’ll strike atoms of nitrogen and oxygen, which in turn will glow. Aurora Borealis, Northern Lights.

So if you live in the upper northern hemisphere, including Europe, Canada and much of the United States, keep your eyes turned to the north (and to the south if you’re in Australia or southern South America) over the next couple of nights. Dark skies may be crucial; the glow may be very faint.

You can also keep abreast of the situation, as I will, using NOAA data, available for instance at

http://www.swpc.noaa.gov/communities/space-weather-enthusiasts

The plot on the upper left of that website, an example of which is reproduced below, shows three types of data. The top graph shows the amount of X-rays impacting the atmosphere; the big jump on the 14th is Friday’s flare. And if and when the Earth’s magnetic field goes nuts and auroras begin, the bottom plot will show the so-called “Kp Index” climbing to 5, 6, or hopefully 7 or 8. When the index gets that high, there’s a much greater chance of seeing auroras much further away from the poles than usual.

The latest space weather overview plot

Keep an eye also on the data from the ACE satellite, lower down on the website; it’s placed to give Earth an early warning, so when its data gets busy, you’ll know the cloud of particles is not far away.

Wishing you all a great sky show!

Penny Wise, Pound Foolish

The cost to American science and healthcare of the administration’s attack on legal immigration is hard to quantify.  Maybe it will prevent a terrorist attack, though that’s hard to say.  What is certain is that American faculty are suddenly no longer able to hire the best researchers from the seven countries currently affected by the ban.  Numerous top scientists suddenly cannot travel here to share their work with American colleagues; or if already working here, cannot now travel abroad to learn from experts elsewhere… not to mention visiting their families.  Those caught outside the country cannot return, hurting the American laboratories where they are employed.

You might ask what the big deal is; it’s only seven countries, and the ban is temporary. Well (even ignoring the outsized role of Iran, whose many immigrant engineers and scientists are here because they dislike the ayatollahs and their alternative facts), the impact extends far beyond these seven.

The administration’s tactics are chilling.  Scientists from certain countries now fear that one morning they will discover their country has joined the seven, so that they too cannot hope to enter or exit the United States.  They will decide now to turn down invitations to work in or collaborate with American laboratories; it’s too risky.  At the University of Pennsylvania, I had a Pakistani postdoc, who made important contributions to our research effort. At the University of Washington we hired a terrific Pakistani mathematical physicist. Today, how could I advise someone like that to accept a US position?

Even those not worried about being targeted may decide the US is not the open and welcoming country it used to be.  Many US institutions are currently hiring people for the fall semester.  A lot of bright young scientists — not just Muslims from Muslim-majority nations — will choose instead to go instead to Canada, to the UK, and elsewhere, leaving our scientific enterprise understaffed.

Well, but this is just about science, yes?  Mostly elite academics presumably — it won’t affect the average person.  Right?

Wrong.  It will affect many of us, because it affects healthcare, and in particular, hospitals around the country.  I draw your attention to an article written by an expert in that subject:

http://www.cnn.com/2017/01/29/opinions/trump-ban-impact-on-health-care-vox/index.html

and I’d like to quote from the article (highlights mine):

“Our training hospitals posted job listings for 27,860 new medical graduates last year alone, but American medical schools only put out 18,668 graduates. International physicians percolate throughout the entire medical system. To highlight just one particularly intense specialty, fully 30% of American transplant surgeons started their careers in foreign medical schools. Even with our current influx of international physicians as well as steadily growing domestic medical school spots, the Association of American Medical Colleges estimates that we’ll be short by up to 94,700 doctors by 2025.

The President’s decision is as ill-timed as it was sudden. The initial 90-day order encompasses Match Day, the already anxiety-inducing third Friday in March when medical school graduates officially commit to their clinical training programs. Unless the administration or the courts quickly fix the mess President Trump just created, many American hospitals could face staffing crises come July when new residents are slated to start working.”

If you or a family member has to go into the hospital this summer and gets sub-standard care due to a lack of trained residents and doctors, you know who to blame.  Terrorism is no laughing matter, but you and your loved ones are vastly more likely to die due to a medical error than due to a terrorist.  It’s hard to quantify exactly, but it is clear that over the years since 2000, the number of Americans dying of medical errors is in the millions, while the number who died from terrorism is just over three thousand during that period, almost all of whom died on 9/11 in 2001. So addressing the terrorism problem by worsening a hospital problem probably endangers Americans more than it protects them.

Such is the problem of relying on alternative facts in place of solid scientific reasoning.

Alternative Facts and Crying Wolf

My satire about “alternative facts” from yesterday took some flak for propagating the controversial photos of inaugurations that some say are real and some say aren’t. I don’t honestly care one bit about those photos. I think it is of absolutely no importance how many people went to Trump’s inauguration; it has no bearing on how he will perform as president, and frankly I don’t know why he’s making such a big deal out of it. Even if attendance was far less than he and his people claim, it could be for two very good reasons that would not reflect badly on him at all.

First, Obama’s inauguration was extraordinarily historic. For a nation with our horrific past —  with most of our dark-skinned citizens brought to this continent to serve as property and suffer under slavery for generations — it was a huge step to finally elect an African-American president. I am sure many people chose to go to the 2009 inauguration because it was special to them to be able to witness it, and to be able to say that they were there. Much as many people adore Trump, it’s not so historic to have an aging rich white guy as president.

Second, look at a map of the US, with its population distribution. A huge population with a substantial number of Obama’s supporters live within driving distance or train distance of Washington DC. From South Carolina to Massachusetts there are large left-leaning populations. Trump’s support was largest in the center of the US, but people would not have been able to drive from there or take a train. The cost of travel to Washington could have reduced Trump’s inauguration numbers without reflecting on his popularity.

So as far as I’m concerned, it really doesn’t make any difference if Trump’s inauguration numbers were small, medium or large. It doesn’t count in making legislation or in trade negotiations; it doesn’t count in anything except pride.

But what does count, especially in foreign affairs, is whether people listen to what a president says, and by extension to what his or her press secretary says. What bothers me is not the political spinning of facts. All politicians do that. What bothers me is the claim of having hosted “the best-attended inauguration ever” without showing any convincing evidence, and the defense of those claims (and we heard it again today) that this is because it’s ok to disagree with facts.

If facts can be chosen at will, even in principle, then science ceases to function. Science — a word that means “evidence-based reasoning applied logically to determine how reality really works” — depends on the existence and undeniability of evidence. It’s not an accident that physics, unlike some subjects, does not have a Republican branch and a Democratic branch; it doesn’t have a Muslim, Christian, Buddhist or Jewish branch;  there’s just one type.  I work with people from many countries and with many religious and political beliefs; we work together just fine, and we don’t have discussions about “alternative facts.”

If instead you give up evidence-based reasoning, then soon you have politics instead of science determining your decisions on all sorts of things that matter to people because it can hurt or kill them: food safety, road safety, airplane safety, medicine, energy policy, environmental protection, and most importantly, defense. A nation that abandons evidence is abandoning applied reason and logic; and the inevitable consequence is that people will die unnecessarily.  It’s not a minor matter, and it’s not outside the purview of scientists to take a stand on the issue.

Meanwhile, I find the context for this discussion almost as astonishing as the discussion itself. It’s one thing to say unbelievable things during a campaign, but it’s much worse once in power. For the press secretary on day two of a new administration to make an astonishing and striking claim, but provide unconvincing evidence, has the effect of completely undermining his function.  As every scientist knows by heart, extraordinary claims require extraordinary evidence.  Imagine the press office at the CERN laboratory announcing the discovery of the Higgs particle without presenting plots of its two experiments’ data; or imagine if the LIGO experimenters had claimed discovery of gravitational waves but shown no evidence.  Mistakes are going to happen, but they have to be owned: imagine if OPERA’s tentative suggestion of neutrinos-faster-than-light, which was an experimental blunder, or BICEP’s loud misinterpretation of their cosmological data, had not been publicly retracted, with a clear public explanation of what happened.  When an organization makes a strong statement but won’t present clear evidence in favor, and isn’t willing to retract the statement when shown evidence against it, it not only introduces immediate suspicion of the particular claim but creates a wider credibility problem that is extremely difficult to fix.

Fortunately, the Higgs boson has been observed by two different experiments, in two different data-taking runs of both experiments; the evidence is extraordinary.  And LIGO’s gravitational waves data is public; you can check it yourself, and moreover there will be plenty of opportunities for further verification as Advanced VIRGO comes on-line this year.    But the inauguration claim hasn’t been presented with extraordinary evidence in its favor, and there’s significant contradictory evidence (from train ridership and from local sales).    When something extraordinary is actually true, it’s true from all points of view, not subject to “alternative facts”; and the person claiming it has the responsibility to find evidence, of several different types, as soon as possible.  If firm evidence is lacking, the claim should only be made tentatively.  (A single photo isn’t convincing, one way or the other, especially nowadays.)

As any child knows, it’s like crying wolf.  If your loud claim isn’t immediately backed up, or isn’t later retracted with a public admission of error, then the next time you claim something exceptional, people will just laugh and ignore you.  And nothing’s worse than suggesting that “I have my facts and you have yours;” that’s the worst possible argument, used only when firm evidence simply isn’t available.

I can’t understand why a press secretary would blow his credibility so quickly on something of so little importance.  But he did it.  If the new standards are this low, can one expect truth on anything that actually matters?  It’s certainly not good for Russia that few outside the country believe a word that Putin says; speaking for myself, I would never invest a dollar there. Unfortunately, leaders and peoples around the world, learning that the new U.S. administration has “alternative facts” at its disposal, may already have drawn the obvious conclusion.    [The extraordinary claim that “3-5 million” non-citizens (up from 2-3 million, the previous version of the claim) voted in the last election, also presented without extraordinary evidence, isn’t helping matters.] There’s now already a risk that only the president’s core supporters will believe what comes from this White House, even in a time of crisis or war.

Of course all governments lie sometimes.  But it’s wise to tell the truth most of the time, so that your occasional lies will sometimes be thought to be true.  Governments that lie constantly, even pointlessly, aren’t believed even when they say something true.  They’ve cried wolf too often.

So what’s next?  Made-up numbers for inflation, employment, the budget deficit, tax revenue? Invented statistics for the number of people who have health insurance?  False information about the readiness of our armed forces and the cost of our self-defense?  How far will this go?  And how will we know?

What’s all this fuss about having alternatives?

I don’t know what all the fuss is about “alternative facts.” Why, we scientists use them all the time!

For example, because of my political views, I teach physics students that gravity pulls down. That’s why the students I teach, when they go on to be engineers, put wheels on the bottom corners of cars, so that the cars don’t scrape on the ground. But in some countries, the physicists teach them that gravity pulls whichever way the country’s leaders instruct it to. That’s why their engineers build flying carpets as transports for their country’s troops. It’s a much more effective way to bring an army into battle, if your politics allows it.  We ought to consider it here.

Another example: in my physics class I claim that energy is “conserved” (in the physics sense) — it is never created out of nothing, nor is it ever destroyed. In our daily lives, energy is taken in with food, converted into special biochemicals for storage, and then used to keep us warm, maintain the pumping of our hearts, allow us to think, walk, breathe — everything we do. Those are my facts. But in some countries, the facts and laws are different, and energy can be created from nothing. The citizens of those countries never need to eat; it is a wonderful thing to be freed from this requirement. It’s great for their military, too, to not have to supply food for troops, or fuel for tanks and airplanes and ships. Our only protection against invasion from these countries is that if they crossed our borders they’d suddenly need fuel tanks.

Facts are what you make them; it’s entirely up to you. You need a good, well-thought-out system of facts, of course; otherwise they won’t produce the answers that you want. But just first figure out what you want to be true, and then go out and find the facts that make it true. That’s the way science has always been done, and the best scientists all insist upon this strategy.  As a simple illustration, compare the photos below.  Which picture has more people in it?   Obviously, the answer depends on what facts you’ve chosen to use.   [Picture copyright Reuters]  If you can’t understand that, you’re not ready to be a serious scientist!

A third example: when I teach physics to students, I instill in them the notion that quantum mechanics controls the atomic world, and underlies the transistors in every computer and every cell phone. But the uncertainty principle that arises in quantum mechanics just isn’t acceptable in some countries, so they don’t factualize it. They don’t use seditious and immoral computer chips there; instead they use proper vacuum tubes. One curious result is that their computers are the size of buildings. The CDC advises you not to travel to these countries, and certainly not to take electronics with you. Not only might your cell phone explode when it gets there, you yourself might too, since your own molecules are held together with quantum mechanical glue. At least you should bring a good-sized bottle of our local facts with you on your travels, and take a good handful before bedtime.

Hearing all the naive cries that facts aren’t for the choosing, I became curious about what our schools are teaching young people. So I asked a friend’s son, a bright young kid in fourth grade, what he’d been learning about alternatives and science. Do you know what he answered?!  I was shocked. “Alternative facts?”, he said. “You mean lies?” Sheesh. Kids these days… What are we teaching them? It’s a good thing we’ll soon have a new secretary of education.

An Interesting Result from CMS, and its Implications

UPDATE 10/26: In the original version of this post, I stupidly forgot to include an effect, causing an error of a factor of about 5 in one of my estimates below. I had originally suggested that a recent result using ALEPH data was probably more powerful than a recent CMS result.  But once the error is corrected, the two experiments appear have comparable sensitivity. However, I was very conservative in my analysis of ALEPH, and my guess concerning CMS has a big uncertainty band — so it might go either way.  It’s up to ALEPH experts and CMS experts to show us who really wins the day.  Added reasoning and discussion marked in green below.

In Friday’s post, I highlighted the importance of looking for low-mass particles whose interactions with known particles are very weak. I referred to a recent preprint in which an experimental physicist, Dr. Arno Heister, reanalyzed ALEPH data in such a search.

A few hours later, Harvard Professor Matt Reece pointed me to a paper that appeared just two weeks ago: a very interesting CMS analysis of 2011-2012 data that did a search of this type — although it appears that CMS [one of the two general purpose detectors at the Large Hadron Collider (LHC)] didn’t think of it that way.

The title of the paper is obscure:  “Search for a light pseudo–scalar Higgs boson produced in association with bottom quarks in pp collisions at 8 TeV“.  Such spin-zero “pseudo-scalar” particles, which often arise in speculative models with more than one Higgs particle, usually decay to bottom quark/anti-quark pairs or tau/anti-tau pairs.  But they can have a very rare decay to muon/anti-muon, which is much easier to measure. The title of the paper gives no indication that the muon/anti-muon channel is the target of the search; you have to read the abstract. Shouldn’t the words “in the dimuon channel” or “dimuon resonance” appear in the title?  That would help researchers who are interested in dimuons, but not in pseudo-scalars, find the paper.

Here’s the main result of the paper:

At left is shown a plot of the number of events as a function of the invariant mass of the muon/anti-muon pairs.  CMS data is in black dots; estimated background is shown in the upper curve (with top quark backgrounds in the lower curve); and the peak at bottom shows what a simulated particle decaying to muon/anti-muon with a mass of 30 GeV/c² would look like. (Imagine sticking the peak on top of the upper curve to see how a signal would affect the data points).  At right are the resulting limits on the rate for such a resonance to be produced and then decay to muon/anti-muon, if it is radiated off of a bottom quark. [A limit of 100 femtobarns means that at most two thousand collisions of this type could have occurred during the year 2012.  But note that only about 1 in 100 of these collisions would have been observed, due to the difficulty of triggering on these collisions and some other challenges.]

[Note also the restriction of the mass of the dimuon pair to the range 25 GeV to 60 GeV. This may have done purely been for technical reasons, but if it was due to the theoretical assumptions, that restriction should be lifted.]

While this plot places moderate limits on spin-zero particles produced with a bottom quark, it’s equally interesting, at least to me, in other contexts. Specifically, it puts limits on any light spin-one particle (call it V) that mixes (either via kinetic or mass mixing) with the photon and Z and often comes along with at least one bottom quark… because for such particles the rate to decay to muons is not rare.  This is very interesting for hidden valley models specifically; as I mentioned on Friday, new spin-one and spin-zero particles often are produced together, giving a muon/anti-muon pair along with one or more bottom quark/anti-quark pairs.

But CMS interpreted its measurement only in terms of radiation of a new particle off a bottom quark.  Now, what if a V particle decaying sometimes to muon/anti-muon were produced in a Z particle decay (a possibility alluded to already in 2006).  For a different production process, the angles and energies of the particles would be different, and since many events would be lost (due to triggering, transverse momentum cuts, and b-tagging inefficiencies at low transverse momentum) the limits would have to be fully recalculated by the experimenters.  It would be great if CMS could add such an analysis before they publish this paper.

Still, we can make a rough back-of-the-envelope estimate, with big caveats. The LHC produced about 600 million Z particles at CMS in 2012. The plot at right tells us that if the V were radiated off a bottom quark, the maximum number of produced V’s decaying to muons would be about 2000 to 8000, depending on the V mass.  Now if we could take those numbers directly, we’d conclude that the fraction of Z’s that could decay to muon/anti-muon plus bottom quarks in this way would be 3 to 12 per million. But sensitivity of this search to a Z decay to V is probably much less than for a V radiated off bottom quarks [because (depending on the V mass) either the bottom quarks in the Z decay would be less energetic and more difficult to tag, or the muons are less energetic on average, or both.] So I’m guessing that the limits on Z decays to V are always worse than one per hundred thousand, for any V mass.  (Thanks to Wei Xue for catching an error as I was finalizing my estimate.)  

If that guess/estimate is correct, then the CMS search does not rule out the possibility of a hundred or so Z decays to V particles at each of the various LEP experiments.  That said, old LEP searches might rule this possibility out; if anyone knows of such a search, please comment or contact me.

As for whether Heister’s analysis of the ALEPH experiment’s data shows signs of such a signal, I think it unlikely (though some people seemed to read my post as saying the opposite.)  As I pointed out in Friday’s post, not only is the excess too small for excitement on its own, it also is somewhat too wide and its angular correlations look like the background (which comes, of course, from bottom quarks that decay to charm quarks plus a muon and neutrino.)  The point of Friday’s post, and of today’s, is that we should be looking.

In fact, because of Heister’s work (which, by the way, is his own, not endorsed by the ALEPH collaboration), we can draw interesting if rough conclusions.  Ignore for now the bump at 30 GeV/c²; that’s more controversial.  What about the absence of a bump between 35 and 50 GeV/c²? Unless there are subtleties with his analysis that I don’t understand, we learn that at ALEPH there were fewer than ten Z decays to a V particle (plus a source of bottom quarks) for V in this mass range.  That limits such Z decays to about 2 to 3 per million.  OOPS: Dumb mistake!! At this step, I forgot to include the fact that requiring bottom quarks in the ALEPH events only works about 20% of the time (thanks to Imperial College Professor Oliver Buchmuller for questioning my reasoning!) The real number is therefore about 5 times larger, more like 10 to 15 per million. If that rough estimate is correct, it would provide a more powerful constraint than constraint roughly comparable to the current CMS analysis.

[[BUT: In my original argument I was very conservative.  When I said “fewer than 10”, I was trying to be brief; really, looking at the invariant mass plot, the allowed numbers of excess events for a V with mass above 36 GeV is typically fewer than 7 or even 5.  And that doesn’t include any angular information, which for many signals would reduce the numbers to 3.   Including these effects properly brings the ALEPH bound back down to something close to my initial estimate.  Anyway, it’s clear that CMS is nipping at ALEPH’s heels, but I’m still betting they haven’t passed ALEPH — yet.]]

So my advice would be to set Heister’s bump aside and instead focus on the constraints that one can obtain, and the potential discoveries that one could make, with this type of analysis, either at LEP or at LHC. That’s where I think the real lesson lies.

A Hidden Gem At An Old Experiment?

This summer there was a blog post from   claiming that “The LHC `nightmare scenario’ has come true” — implying that the Large Hadron Collider [LHC] has found nothing but a Standard Model Higgs particle (the simplest possible type), and will find nothing more of great importance. With all due respect for the considerable intelligence and technical ability of the author of that post, I could not disagree more; not only are we not in a nightmare, it isn’t even night-time yet, and hardly time for sleep or even daydreaming. There’s a tremendous amount of work to do, and there may be many hidden discoveries yet to be made, lurking in existing LHC data.  Or elsewhere.

I can defend this claim (and have done so as recently as this month; here are my slides). But there’s evidence from another quarter that it is far too early for such pessimism.  It has appeared in a new paper (a preprint, so not yet peer-reviewed) by an experimentalist named Arno Heister, who is evaluating 20-year old data from the experiment known as ALEPH.

In the early 1990s the Large Electron-Positron (LEP) collider at CERN, in the same tunnel that now houses the LHC, produced nearly 4 million Z particles at the center of ALEPH; the Z’s decayed immediately into other particles, and ALEPH was used to observe those decays.  Of course the data was studied in great detail, and you might think there couldn’t possibly be anything still left to find in that data, after over 20 years. But a hidden gem wouldn’t surprise those of us who have worked in this subject for a long time — especially those of us who have worked on hidden valleys. (Hidden Valleys are theories with a set of new forces and low-mass particles, which, because they aren’t affected by the known forces excepting gravity, interact very weakly with the known particles.  They are also often called “dark sectors” if they have something to do with dark matter.)

For some reason most experimenters in particle physics don’t tend to look for things just because they can; they stick to signals that theorists have already predicted. Since hidden valleys only hit the market in a 2006 paper I wrote with then-student Kathryn Zurek, long after the experimenters at ALEPH had moved on to other experiments, nobody went back to look in ALEPH or other LEP data for hidden valley phenomena (with one exception.) I didn’t expect anyone to ever do so; it’s a lot of work to dig up and recommission old computer files.

This wouldn’t have been a problem if the big LHC experiments (ATLAS, CMS and LHCb) had looked extensively for the sorts of particles expected in hidden valleys. ATLAS and CMS especially have many advantages; for instance, the LHC has made over a hundred times more Z particles than LEP ever did. But despite specific proposals for what to look for (and a decade of pleading), only a few limited searches have been carried out, mostly for very long-lived particles, for particles with mass of a few GeV/c² or less, and for particles produced in unexpected Higgs decays. And that means that, yes, hidden physics could certainly still be found in old ALEPH data, and in other old experiments. Kudos to Dr. Heister for taking a look. Continue reading