Today I’m attending the first day of a short workshop of particle theorists and experimentalists at the Princeton Center for Theoretical Science, a sort of “Where are we now and where are we going?” meeting. It’s entitled “Higgs Physics After Discovery”, but discussion will surely range more widely.
What, indeed, are the big questions facing particle physics in the short-term, meaning the next few months? Well, here are a few key ones:
- A Higgs particle of some type has been discovered by the ATLAS and CMS experiments at the Large Hadron Collider [LHC] (with some contributions from the Tevatron experiments DZero and CDF); is it the simplest possible type of Higgs particle (the “Standard Model Higgs“) or is it more complex? What data analysis can be done on the LHC’s data from 2011-2012 to shed more light on this question?
- More generally, from the LHC’s huge data set from 2011-2012 — specifically, from the data analysis that has been done so far — what precisely have we learned? (It’s increasingly important to go beyond the rougher estimates that were appropriate last year when the data was still pouring in.) What types of new phenomena have been excluded, and to what extent?
- What other types of data analysis should be done on the 2011-2012 data, in order to look for other new phenomena that could still be lurking there? (There’s still a lot to be done on this question!) And what types of work should theoretical particle physicists do to help the experimentalists address this issue?
- Several experiments from the Tevatron and the LHC, notably the LHCb experiment, have learned that newly measured decays of certain mesons (hadrons with equal numbers of quarks and anti-quarks) that contain heavy quarks are roughly consistent with the Standard Model (the equations we use to describe the known elementary particles and forces, and a simplest type of Higgs field and Higgs particle.) How do these findings constrain the possibility of other new phenomena?
- Looking ahead to 2015, when the LHC will begin running again at a higher energy per proton-proton collision, what preparations need to be made? Especially, what needs to be done to refine the triggering systems at ATLAS, CMS and LHCb, so that the maximum information can be extracted from the new data, and no important information is unnecessarily discarded?
- Which, if any, of the multiple (but mostly mutually inconsistent) experimental hints of dark matter should be taken seriously? Which possibilities do the various dark matter experiments, and the LHC’s data, actually exclude or favor?
That might be it for the very near term. There are lots of other questions in the medium- to long-term, among which is the big question of what types of experiments should be done over the next 10 – 20 years. One challenge is that the LHC’s data hasn’t yet given us a clear target other than the Higgs particle itself. An obvious possible experiment to do is to study the Higgs in more detail, using an electron/anti-electron collider — historically this has been a successful strategy that has been used on almost every new apparently-elementary particle. But there are a lot of other possibilities, including raising the LHC’s collisions to even higher energy than we’ll see in 2015, using more powerful magnets currently under development.
If there are other near-term questions I’ve forgotten about, I’m sure I’ll be reminded at the workshop, and I’ll add them in.