A post for general readers:
The recent launch of NASA’s new moon mission, Artemis 1, is mostly intended to demonstrate that NASA’s incredibly expensive new rocket system will actually work and be safe for humans to travel in. But along the way, a little science will be done. The Orion spacecraft at the top of the giant rocket, which will actually make the trip to the Moon and back and will carry astronauts in future missions, has a few scientific instruments of its own. Not surprisingly, though, most are aimed at monitoring the environment that future astronauts will encounter. But meanwhile the mission is delivering ten shoe-box-sized satellites (“CubeSats“) which will carry out various other scientific and/or technological investigations. A number of these involve physics, and a few directly employ particle physics.
The use of particle physics detectors for the purpose of studying the not-so-empty space around the Moon and Earth is no surprise. Near any star like the Sun, what we think of as the vacuum of space (and biologically speaking, it is vacuum: no air and hardly any atoms, making it unsurvivable as well as silent) is actually swarming with subatomic particles. Well, perhaps “swarming” is an overstatement. But nevertheless, if you want to understand the challenges to humans and equipment in the areas beyond the Earth, you’ll inevitably be doing particle physics. That’s what a couple of the CubeSats will be studying, entirely or in part.
What’s more of a surprise is that one of the best ways to find water on the Moon without actually landing on it involves putting particle physics to use. Although the technique is not new, it’s not so obvious or widely known, so I thought I’d draw your attention to it.
(more…)