For the first time in some years, I’m spending two and a half weeks at CERN (the lab that hosts the Large Hadron Collider [LHC]). Most of my recent visits have been short or virtual, but this time* there’s a theory workshop that has collected together a number of theoretical particle physicists, and it’s a good opportunity for all of us to catch up with the latest creative ideas in the subject. It’s also an opportunity to catch a glimpse of the furtive immensity of Mont Blanc, a hulking bump on the southern horizon, although only if (as is rarely the case) nature offers clear and beautiful weather.
More importantly, new results on the data collected so far in 2016 at the LHC are coming very soon! They will be presented at the ICHEP conference that will be held in Chicago starting August 3rd. And there’s something we’ll be watching closely.
You may remember that in a post last December I wrote:
“Everybody wants to know. That bump seen on the ATLAS and CMS two-photon plots! What… IS… it…?“
Why the excitement? A bump of this type can be a signal of a new particle (as was the case for the Higgs particle itself.) And since a new particle that would produce a bump of this size was both completely unexpected and completely plausible, there was hope that we were seeing a hint of something new and important.
However, as I wrote in the same post,
“Well, to be honest, probably it’s just that: a bump on a plot. But just in case it’s not…”
and I went on to discuss briefly what it might mean if it wasn’t just a statistical fluke. But speculation may be about to end: finally, we’re about to find out if it was indeed just a fluke — or a sign of something real.
Since December the amount of 13 TeV collision data available at ATLAS and CMS (the two general purpose experiments at the LHC) has roughly quadrupled, which means that typical bumps and wiggles on their 2015-2016 plots have decreased in relative size by about a factor of two (= square root of four). If the December bump is just randomness, it should also decrease in relative size. If it’s real, it should remain roughly the same relative size, but appear more prominent relative to the random bumps and wiggles around it.
Now, there’s a caution to be added here. The December ATLAS bump was so large and fat compared to what was seen at CMS that (since reality has to appear the same at both experiments, once enough data has been collected) it was pretty obvious that even if it there were a real bump there, at ATLAS it was probably in combination with a statistical fluke that made it look larger and fatter than its true nature. [Something similar happened with the Higgs; the initial bump that ATLAS saw was twice as big as expected, which is why it showed up so early, but it gradually has shrunk as more data has been collected and it is now close to its expected size. In retrospect, that tells us that ATLAS’s original signal was indeed combined with a statistical fluke that made it appear larger than it really is.] What that means is that even if the December bumps were real, we would expect the ATLAS bump to shrink in size (but not statistical significance) and we would expect the CMS bump to remain of similar size (but grow in statistical significance). Remember, though, that “expectation” is not certainty, because at every stage statistical flukes (up or down) are possible.
In about a week we’ll find out where things currently stand. But the mood, as I read it here in the hallways and cafeteria, is not one of excitement. Moreover, the fact that the update to the results is (at the moment) unobtrusively scheduled for a parallel session of the ICHEP conference next Friday, afternoon time at CERN, suggests we’re not going to see convincing evidence of anything exciting. If so, then the remaining question will be whether the reverse is true: whether the data will show convincing evidence that the December bump was definitely a fluke.
Flukes are guaranteed; with limited amounts of data, they can’t be avoided. Discoveries, on the other hand, require skill, insight, and luck: you must ask a good question, address it with the best available methods, and be fortunate enough that (as is rarely the case) nature offers a clear and interesting answer.
*I am grateful for the CERN theory group’s financial support during this visit.