What’s a Proton, Anyway?

The Large Hadron Collider is mainly a machine for smashing protons into each other.  But what’s a proton?

First and foremost, it’s a mess.  A total mess.   As ugly and chaotic as a hydrogen atom is elegant and simple.

Ok, then, what’s a hydrogen atom?

The elegant simplicity of Hydrogen: the heavy proton almost stationary at the center, and the lightweight electron moving at ~1% the speed of light within the grey-shaded region. (M. Strassler 2011)

It is the simplest example of what physicists call a “bound state” — the word “state” basically just meaning a thing that hangs around for a while, and the word “bound” meaning that it has components that are bound to each other, as spouses are bound in marriage.  In fact, the image of a married couple, especially one with one spouse weighing a lot more than the other, is probably the one you want.  A proton sits in the center, barely moving, while floating around on the edges, moving a lot faster than you and me but much slower than the speed of light, the ultimate speed limit, is a lightweight electron.   It’s a peaceful vision of marital bliss.

Or so it appears, until we look into the proton itself.  The inside of the proton itself is more like a commune packed full of single adults and children: pure chaos.  It too is a bound state, but what it binds is not something as simple as a proton and an electron, as in hydrogen, or even a few dozen electrons to an atomic nucleus, as in more complicated atoms such as gold, but zillions (meaning “too many and too changeable to count usefully”) of lightweight particles called quarks, antiquarks and gluons.  (More on them elsewhere.)  It is impossible to describe the proton’s structure simply, or draw simple pictures, because it’s highly disorganized.  All the quarks and antiquarks and gluons inside are rushing around as fast as possible, at nearly the speed of light.

Snapshot of a proton -- and imagine all of the quarks (up,down,and strange -- u,d,s), antiquarks (u,d,s with a bar on top), and gluons (g) zipping around near the speed of light, banging into each other, and appearing and disappearing. (M.Strassler 2010)

You may have heard that a proton is made from three quarks.  Indeed here are several pages that say so.  This is a lie — a white lie, but a big one.  In fact there are zillions of gluons, antiquarks, and quarks in a proton.   The standard shorthand, “the proton is made from two up quarks and one down quark”, is really a statement that the proton has two more up quarks than up antiquarks, and one more down quark than down antiquarks.   To make the glib shorthand correct you need to add the phrase “plus zillions of gluons and zillions of quark-antiquark pairs.”  Without this phrase, one’s view of the proton is so simplistic that it is not possible to understand the LHC at all.

The Tiny White Lie: Wikipedia's sterotypical image of a proton as two up quarks and a down quark bound together.

In short, atoms are to protons as a pas de deux in a delicate ballet is to a dance floor crowded with drunk twenty-somethings bouncing and flailing to a DJ.

This is why, if you are a theorist trying to understand what the Large Hadron Collider will observe in its collisions of protons, you’ve got a challenge.  It isn’t so easy to make predictions for collisions of objects that you can’t characterize in a simple way.  But fortunately, starting back in the 1970s, following ideas of Bjorken from the late 1960s, theoretical physicists found a relatively simple and workable technique. Still, the technique only works to a certain extent, typically only accurate to ten percent or so (though occasionally better.)  For this and several other reasons, the reliability of our calculations at the LHC is always somewhat limited.

Now, what about all those quarks, antiquarks and gluons — what are these particles?  that’s another article…

One more thing about the proton.  It’s tiny.   Really tiny.  If you blew up a hydrogen atom as big as your bedroom, the proton would be a tiny grain of dust almost too hard for you to see.  In fact, it’s because the proton is so small that we can ignore the chaos within when describing the hydrogen atom as simple.  More precisely, the distance across a proton is 100,000 times smaller than the distance across a hydrogen atom.

For comparison, the distance across the sun is only 3,000 times smaller than the distance across the solar system (measured from the planet Neptune’s orbit.)  That’s right — the atom is emptier than the solar system!  Think about that when you look up in the sky at night!

But you then might well ask, “Wait a second! You’re telling me that the Large Hadron Collider somehow smashes protons together that are 100,000 times smaller than atoms?  How can anyone possibly do that?!”

Excellent question.

198 responses to “What’s a Proton, Anyway?

  1. Dear Professor Strassler,

    I am not a student nor have I ever studied physics. I just a 49 year old guy who is fascinated by the info in your website. So please forgive me if the following question sounds a bit stupid.
    If the many crowded particles within a proton are moving very close to the speed light, then is time dialated within the proton? And if so, would the proton constitute a point in space-time where time moves very slowly as compared to what exists outside of the proton?
    Thank you in advance, for your time (as well as creating such a great website, especially for folks like me)

    John Chartier

    • Such questions are welcome.

      The challenging part of this question is that one has to remember that time is not, in some absolute sense, dilated. It depends on your point of view.

      First, a general comment. Time — or more precisely, the length of time between two events — is not the same for two observers who are moving relative to one another. [Neither is space — or more precisely, the distance between two events. But there is a combination of the time separation and the space separation of two events which is the same for the two observers… so not everything is equally slippery.]

      If a proton is sitting still relative to us, time for the proton as a whole is not dilated. That said, from our point of view, it is dilated for each quark and antiquark and gluon, which are moving relative to us. Now how does this manifest itself?

      If you were traveling along with one of the quarks, you would say that it takes a certain amount of time to cross from one side of the proton to the other. But I, sitting outside the proton, and not moving with respect to it, would say that it takes longer. The reason that this is consistent is that you would see the proton flattened by length-contraction, so you would think it takes a short time to cross it. I would say the proton is perfectly round, so I would not be surprised that it takes longer.

      Each quark and gluon (or more precisely, each observer who is stationary with respect to one of the quarks or gluons) sees the proton somewhat flattened in the direction that the quark is moving, and thinks it takes relatively little time to cross the proton. Standing outside the proton, we think the proton is round, and that it takes any quark or gluon moving near the speed of light about the same amount of time to cross from one side to the other.

      If the proton is moving very fast relative to us (as at the LHC) then we see the proton as highly flattened in its direction of motion. It looks like a flying pancake. And we also see the relative motion of the quarks and gluons, as they try to cross the proton, as slower — time dilation makes us think that the motion of the quarks and gluons across the proton is slowed down, and that it takes them longer to cross than if the proton were at rest in front of us. [This slowed-motion is actually very useful in the theory of high-energy proton-proton collisions… but that’s a technical point, just added for your amusement.]

      Nothing about relativity is easy to think about. But I hope that was helpful to some degree.

      • so u said that time dilation is relative… then what actually is happening? does the actually get dialated or not?
        time dialation always seems to confuse me!

        • Each observer sees the other’s clock as running slower. This sounds impossible. Meanwhile, each observer sees the other as compressed along the direction of motion (length contraction). This also sounds impossible. The magic in Einstein’s formulas (or more precisely, his interpretation of Lorentz’s formulas) is that the two seemingly impossible things, combined together, become possible, consistent, and correct.

      • i am still a student and i am unable to understand your diliated talks could you please elaborate it in simpler language with real life examples.

  2. Prof. Strassler,
    Is the proton made up of only up, down and strange quarks and gluons, or are there other kinds of quarks in their quark-antiquark pairs thrown in? If there are no top, bottom, or strange quarks in the proton, what particles do you find them in?

  3. I’m just like John, also 49 year-old guy that wishes he would have taken chemistry – or something more academic in high school than just shop classes. For the last several years I’ve been recording and re-watching as many science programs as possible on my PVR (Naked Science, Through the Wormhole, Wonders of the Universe), and lately have spent “zillions” of hours reading Wikipedia – and other websites (like yours) – on atomic theory. I understand the ‘basics’ of the standard model, and am just now able to ‘grasp’ what those funky 3D electron orbits are all about.

    Although I don’t truly understand what antimatter is – and therefore, can’t believe the universe started out with a slightly lower ratio to that of ‘conventional’ matter, I do believe antimatter exists, and annihilate with its opposite particle (as I’ve seen with continuous electron–positron annihilations from a beta-decaying object). However, this is the first time I’ve ever heard of protons being comprised of a “dance” of quarks, antiquarks and gluons… with 2 up quarks and one down quark ‘not able to find a dance partner.’

    This ‘postulation’ leaves me with a number of questions, the most troubling being – why isn’t the relatively “enormous” energy of these observable in such hadron calculations?

    Also, I know that in accelerators, adding energy to a proton increases the mass of such – and “heavy particles” have been created and detected by this method for decades, but in your “snap shot” of a proton, you have charm and strange quarks. Surely the mass of these exotic particle (however briefly they exist) would wreak havoc with gravity, and make the measurement of every day objects unfeasible.

    Some other questions I have are – Is a neutron also composed of a matter-antimatter ‘mosh pit?’ What about electrons – are the also in a ‘stand-off’ with positrons in their sub-shells?

    Thanks (RE: “What’s a Proton, Anyway?”)

    PS: Please don’t conclude I’m being facetious.

    • You ask “why isn’t the relatively ‘enormous’ energy of these observable in such hadron calculations?”

      I’m not an expert, but I believe that the answer is “it is”. If I’m not confused, the vast majority of the observed mass of the proton comes from the energy in (or represented by, the distinction seems to get a bit fuzzy in quantum mechanics) the “zillions” of quark/anti-quark pairs and gluons. Only a tiny fraction of the total proton mass comes from the rest mass of the up up down trio.

      Neutrons are similar, just with a different set of unpaired quarks. Electrons, however, are not. I think this has something to do with the fact that electrons carry no color charge so they don’t get tied into knots by the strong force.

    • After reading a bit more of this site, I realize something must be wrong with my understanding here. I don’t know if the usually quoted mass of the proton (approx 1 GeV/c^2) is supposed to be a “rest” mass, or if that even makes any sense for a composite particle. Is the motion energy of all those quarks and gluons zipping around at nearly the speed of light a part of this mass or not? What about the potential energy associated with the color charge? Are the paired quark/antiquark pairs “virtual” particles resulting from the mediation of all that energy, whose rest mass somehow “doesn’t count”, or something else entirely?

      • 1 GeV (actually .938) is indeed the rest mass of the proton. As you point out, there is positive motion energy from all those particles running around in there, as well as some amount of positive mass energy, and then there is also a very negative potential energy from the fact that all those particles are tightly bound in there. We do not have a simple description of a proton analogous to a hydrogen atom, where you can work out where all the energy comes from. It’s a big complicated mess, but in the end the sum of the energies for a proton at rest is 0.938 GeV. Yes, highly relativistic bound states are a lot more complicated than nice simple non-relativistic atoms.

        Does that help at all? Maybe not very satisfying… but hopefully clarifying…

      • (I tried to post this a couple of times over the weekend, but it seems to have gone to /dev/null — at least I hope it went there rather than Matt’s inbox. My goal was to assist in addressing some of these questions, not to create extra work. Let’s see if this goes any better when I strip out the links that were in previous versions…)

        Andrew, I think you’ve pretty much got it. There is always a level of impressionistic imprecision in non-mathematical language. That said, sometimes terminology can be important to physical understanding, as in the case of mass: as Matt explains in a comment to his Higgs FAQ (7 September, in response to Alfa), the mass of a particle is constant and does not change with speed. “Rest” mass is a potentially misleading — and unnecessary — concept. For more information, I recommend the 1989 Physics Today article “The Concept of Mass” by Lev Okun, which you can find through a Google search.

        Mass makes as much sense for composites like protons as it does for apparently-elementary (non-composite) particles like electrons and quarks. However, while the known elementary particles gain mass through their interactions with the Higgs field(s), the masses of composites come from the energy (including the mass-energy) of their constituents. In the case of the proton, its mass is roughly 100 times larger than the sum of the masses of the three unpaired quarks that make it a proton (by determining its electric charge and other properties). Describing the other ~99% is where things can get impressionistic.

        Personally, I find it more useful to think in terms of fields. One way of phrasing things is to say that most of the proton’s mass comes from the energy of the strong interaction that ties together the up-quark and down-quark fields to form the proton. The strong interaction is strong enough that it produces many (specifically, “zillions”) of disturbances in the fields.

        I think it’s fine to consider these disturbances “virtual” particles, which are not particles at all. But there is a more subtle issue that I should at least mention. At first glance, there seems to be more than enough energy in these fields to produce “real” (as opposed to “virtual”) gluons, up quarks, down quarks and even strange quarks. However, these would-be particles are themselves confined to the proton by the strong interaction, and therefore are indistinguishable from the more general disturbances in the fields. This phenomenon of confinement is crucial to the physics of protons and similar composites, but it is difficult to explain in any detail.

        Finally, to touch on an issue raised by Sean and James, the strong interaction binding the proton together can indeed produce disturbances in the strange-quark, charm-quark and other fields. However, the larger the mass of the particle associated with a field, the more energy is needed to produce disturbances that have significant effects. Much effort over many years has gone into theoretically calculating and experimentally measuring the effects of strange-quark fields on the proton and neutron. While this issue isn’t entirely settled, I would say there is emerging consensus that these strange-quark contributions to the properties of the proton are fairly insignificant; those of charm-, bottom- and top-quark fields are negligible.

  4. I view the proton as a nearly perfect marriage, where divorce doesn’t happen because none of the parents want to be stuck with the kids.
    The forces at play in a proton seem to form natures most perfect vacuum bottle. It contains and saves nearly primal energy for slow release in proton-proton interaction in the sun.
    Do we know why the proton “surface” is the asymptotic limit for the quarks that would tend to escape its domain?
    The rest mass of protons have been determined to a high degree of accuracy. Using your dance floor analogy (with zillions of quarks and gluons) do some protons have more or fewer dancers than others or is there some force or property that requires precisely some very large number to be present for a proton to occur?

  5. Okay, I started reading thiswebsite last night,and haven’t looked at the comments section yet, so this question/theory may have already been asked/postulated… If space is infinite (in both directions, e.g. large and small), wolud it be possible for our universe to exist as either a proton (stars and “black holes” corresponding to up and down quarks, respectively), or for other mirror universes to exist as such (hand drawing a hand drawing a hand ad naseum)?

    • I think what you are asking is this: what do we know about the universe beyond the part that we can see? Might we ourselves — or rather, the part of the universe that we can observe — be part of an even larger structure?

      Yes, that is possible. But until you or I or someone else can think of a way to study the question experimentally, it remains a pure speculation that cannot be turned into science.

      • Daniel Waring

        My father once told me that anything can always be hypothetically ‘cut’ into smaller pieces; so even a quark has a breakdown of some sort of matter. This would imply that ‘stuff’ is infinitely small, it can always go smaller. Would this not imply that the universe is infinite? Because according to this rule, the observable universe is just a breakdown of something bigger, which must be a breakdown of something bigger…so surely the universe must be infinite.

  6. You say the mass of proton comes from the energy of the strong force, but I thought to have bound states like hydrogen or helium you give out energy to bind the particles so they are in more energetically favourable positions/lower potential and thats why they have less mass then their seperate nucleons/electrons. Binding energy is the energy you need to put in to separate them. Why does the strong force do the opposite with the quarks inside the proton?

  7. A simple question :- If all mass is made of atoms and 99.999999 % of an atom is just space :- The entire mass within the universe must be 99.999999 % space. Why are we looking for dark matter to make up the missing mass.

    • No, there’s a fallacy in your original assumption.

      (a) All mass is not made from atoms. Only ordinary matter under familiar conditions is made from atoms. The atoms in stars have been broken up into electrons and atomic nuclei — and stars makes up a bit of the mass in the universe too. Neutrinos have mass too, there are huge numbers of them throughout the universe, and they have nothing to do with atoms.

      (b) Just because atoms are mostly empty space has nothing to do with whether something is missing or not. You can’t assume because your refrigerator is mostly empty that something is missing from it. Emptiness and missing are logically different things.

      The reason we know something is “missing” is because we can indiretly estimate the total mass of all the objects in the universe, and (separately) we can estimate the total mass made from known types of particles, and the two aren’t close to equal. [To understand how we learn this is a complicated story, and it would take a few articles to explain it, so I won’t try it now.] That tells us that there is some other class of massive objects (probably particles of some type) out there in the universe, whose nature we don’t know.

      But this has nothing to do with the fact that atoms are empty. That’s just a feature of atoms. The point is that there aren’t enough atoms (or neutrinos or other known particles) to equal, in mass, the total mass in the universe.

  8. Hi Matt, one question about the bustling proton: when you say that the proton is filled with “zillions of quark-antiquark pairs” does that mean that it contains more pairs than a similarly sized space of vacuum? i.e. are these zillions of pairs actually part of the proton or are they just part of the jumble of background energy?

    • The quark-antiquark pairs are part of the proton. If you just look at the normal udd quark formation for a proton, you would find that there would be a large energy deficit.

  9. If the rest mass of a proton is finite (0.938 GeV) and is the sum of the positive motion, positive mass, and large negative potential (binding) energies of the constituent elementary particles, is the number of elementary particles making up the proton finite, or is the number of elementary particles bounded by some limit? And does that limit vary between a proton at rest and a proton in motion?

  10. I’ve not heard your description of a proton before, (many pairs of quarks and anti-quarks plus some unmatched). Just wondered if the space just outside the proton/or atom had a similar number/density of these pairs and if so (or even, if not) then what makes up the boundry of what you are describing as the porton.

  11. Hi, Dr. Strassler. I’ve been reading your articles lately (thank you for taking the time to explain things to lay people (which includes me)). The following question popped into my head this morning: Preface: I’ve read something like the proton’s mass is accounted for by the extreme speeds of the quarks, as the (rest) masses of the (three) quarks is not enough to add up to a proton’s mass. Question: If there are zillions of quarks in a proton, would the quarks’ masses then add up to the mass of a proton, even IF all the zillions of quarks were NOT moving at extreme speeds? Thanks for your help! -Kevin

  12. Hi Matt, When you say “zillions of quarks”, what is an order of magnitude of the actual number, if this is known? Are we talking thousands or millions, or more like 10^20? The latter may sound preposterous to some readers; but I seem to recall Leonard Susskind mentioning in his book “The Black Hole War” that a staggering number of photons, something like 10^30, are emitted and absorbed per second by an electron. So it wouldn’t be that surprising if the same sort of numbers applied to quarks and anti-quarks in a proton. Best Wishes, and thanks for this site, John Ramsden.

    • It is not possible to count; it isn’t even well-defined, because the number is constantly changing, and many of these “particles” aren’t really particles at all; they are virtual “particles”, which means they are really more generalized disturbances in the quark fields, not the nicely behaved ripples that are real particles. https://profmattstrassler.com/articles-and-posts/particle-physics-basics/virtual-particles-what-are-they/ Worse, inside a proton (a very small place indeed) it is hard to distinguish clearly the real particles from the virtual ones, so there is no point in trying to count the real ones either.

      When Susskind gives you the 10^30 number, he is referring to virtual photons; these are not really particles. In particular, a virtual photon can have any mass, whereas a real photon is always massless; a virtual electron can have any mass, whereas a real electron always has a mass of 511,000 electron volts / c-squared.

      Moreover, Susskind is apparently ignoring the fact that photons spend some of their time as virtual electron/positron pairs. By the logic that he uses here, you would also conclude that the electron is surrounded by a staggering number of electrons and positrons. Now that really does sound crazy, because shouldn’t that screw up the mass of the electron? No, because these are not real particles; they are disturbances in the electron field, and they don’t have the mass of the electron.

      I’m honestly a little shocked that Susskind would make such a confusing and potentially misleading statement in a book for the public. It sounds very cool at first glance, but unless I’m completely misunderstanding what he’s trying to say, it’s physically very misleading. When I was a graduate student and took a quantum field theory course from Susskind, he certainly did not explain things in this way; nor would I explain it this way to graduate students in my own classes. I don’t see the point in compressing the facts into a form that confuses rather than clarifies.

  13. I was wondering, with “zillions of quark-antiquarks” inside a proton, how was it determined that there are two more up quarks than top anti-quarks and 1 more down quark than down anti-quarks? How is it possible to determine that without counting all of them? I guess it has probably something to do with statistics…

  14. Hello Matt, as lots here I am a lay person with a passion to know stuff. First thank you for your site. I am so grateful that you can interpret things so clearly and honestly for us. I have a very simple elementry question: how does a field propagate through space-time? Does it do so at the speed of light? When for example the Higgs Field is mentioned I have the impression that it is implied that it is everywhere all at once. If that is the case is it something like a space(and time maybe) dimension that exists everywhere and can be “disturbed” by ripples. Also can the fields of the fundamental forces be considered as a type of “dimension”?

    I am stunned that all electrons and quarks etc all have exactly the same mass, charge, etc. for me it seems that there is something truly fundamental being “rattled”

    This is the first place I have ever read in lay terms that the structure of a proton is a mess! Makes lots of sense to me now. But still am mystified why eletrons have a charge of -1 and quarks sit at +2/3 and -1/3. It’s even more crazy to consider that the charges of a proton and electron cancel out each other exactly. What mechanism is in place that makes this so? Where is the link between quarks an leptons? -John Nichas

    • Field’s don’t propagate; they just exist everywhere. The Higgs field that we find throughout the universe is a constant; it doesn’t need to go anywhere.

      Waves in fields (and their quantum versions, which we call particles) do go somewhere. They will travel at the speed of light only if the particle is massless. Otherwise they can travel more slowly, or even sit at rest.

      No, fields are not a sort of dimension. See https://profmattstrassler.com/articles-and-posts/some-speculative-theoretical-ideas-for-the-lhc/extra-dimensions/extra-dimensions-how-to-think-about-them/dimensions-of-physical-space/

      It is a prediction of quantum field theory that electrons are ripples in the electric field, and all such ripples are identical.

      The link between quark and lepton charges isn’t precisely known. But many theories predict that they should balance precisely in this way: for instance, grand unification of the three non-gravitational forces requires it. And consistency of the quantum field theory of the three non-gravitational forces with gravity also requires it, via a subtle mathematical consistency condition.

  15. After reading this article i have come across a question. “If the quarks, antiquarks and gluons move with such high speed then why they do not come out of the proton?”

    • Because when they try to escape, the strong nuclear force pulls them back toward the other quarks, antiquarks and gluons. Really, it’s the same kind of reason that the earth doesn’t escape from the sun, and electrons don’t escape from atoms — but the speeds are much higher because the strong nuclear force is so powerful.

  16. Ok, but what is the source of this nuclear force?

    • Your question is a bit ambiguous, so I’m not sure I’m answering it.

      The strong nuclear force is, like electric forces, a fundamental force in nature.
      These types of fields are fundamental ingredients in the universe, as far as we know; there is no explanation for them in terms of other things.
      Inside the proton, the strong nuclear forces are generated by the strong nuclear fields emitted by quarks, antiquarks and gluons, just as electrical forces that hold an atom together are due to electric fields emitted by the protons in the atomic nucleus and the electrons in the atom’s outskirts.

  17. Well, you invited stupid questions from the general public. I’m just an old lady wanting to understand some of this before I go. Here’s what I don’t understand about your description of the innards of a proton: how can there be quark/anti-quark pairs? Wouldn’t an anti-quark be like anti-matter? And when they are close enough to be paris, why don’t they just obliterate each other????

  18. I have a theory which states that all atomic particles are the result of a single energy source that manifests itself as electrons, protons and neutrons via some very special mechanics…so…my question is…

    Can we be sure that all of these quarks and things aren’t atomic-shrapnal created by the battering that is inflicted upon protons inside the Hadron Collider, and, which, wouldn’t otherwise, exist??

  19. And for this one..Great article Sir !!!

    • Professor Matt..since I am Quite new in Your site..I haven’t read most of the article to be honest..so I was thinking whether You have written an article on Proton Decay already. If You have written one..Please link me to that while replying..

  20. Thanks for the explanation professor, wikipedia didn’t emphasize that their picture of the proton is too simplified, and now I understand what they mean by “A modern perspective has the proton composed of the valence quarks (up, up, down), the gluons, and transitory pairs of sea quarks.” Btw professor, I’m a layperson and don’t understand many things about quantum physics, my algebra skill is rusty and I still suck in calculus, but interested in quantum physics nonetheless. I’m confused with Gev, is it true that the density of the proton is 10^14 gram per cubic centimeter? Two 1Gev proton were accelerated and smashed on a head-on collision and among the debris higgs boson was found having 125 Gev mass… did the event obeyed E^2 – p^2c^2 = m^2c^4?

  21. Moreover professor, I’m curious about the ideas of Bjorken.. I’m not sure if it’s the same thing some of your colleagues called ‘trickery’ because no computer on earth could possibly store in its memory the 10000 trillion numbers of the matrix calculations? And I’m intrigued, they said the standard model predicts we don’t exist, and yet we are here. So 1 is not equal to .99999… after all, even though by algebra it’s equal? They said the apparently substantial stuff is actually no more than fluctuations in the quantum vacuum.. the true proton is the sum of all the possibilities going on at once. Can I conclude that .0000…1 probability won the lottery and this applies too to the Baryon asymmetry of the big bang theory?

  22. Hi professor! A faculty at Stanford University clarified my question into “if a proton has a mass of 1 GeV/c^2 and the Higgs boson has a mass of 125 GeV/c^2, how does that work?” and he wrote:
    So incoming protons have energies
    E_1 = 4000 GeV
    p_1 = 4000 GeV/c
    E_2 = 4000 GeV
    p_2 = – 4000 GeV/c
    That cleared my confused mind, and he used the formula “E^2 – p^2c^2 = m^2c^4” and came up with “S= ( 8000 GeV )^2” as the maximum mass of the event… I’m confused again that he cancelled the momenta because of opposite direction. I feel it would be impertinent if I will argue with a Stanford professor on our first encounter. Is my skepticism about cancellation of opposite momenta justified? Regards.:-)

    • Your skepticism is not justified, but you even know it is true. Suppose two cars of equal size traveling in opposite directions with equal speed have a head-on collision. You know intuitively that the wreckage will not be moving to the right or left… the collision is symmetric. That’s the intuition behind the statement that the momenta of the two cars, which are of equal size but opposite direction, cancel each other.

  23. Yes my skepticism is not justified, he already answered my question satisfactorily about how a couple of smashed 1-Gev protons had produced a 125 Gev higgs boson.

    I noticed that my skepticism arises from my inference that I didn’t tell. I inferred that the cancelled momenta is converted to heat and I didn’t see it in the equation. Perhaps I’m not accustomed yet to the subtle equation of relativistic physics, in chemistry the produced heat is indicated by the letter delta on the right side of the equation.

    I inferred that the cancelled momenta is converted to heat energy because of my thought experiment. Firing two lead bullets on a head-on collision in a vacuum chamber I thought will melt the bullets, the heat came from the cancelled momenta… I could be wrong about it.

    • What you’re missing is an important question: “what is heat?”.

      Heat-energy is the motion-energy of all the component particles of a system, less the motion-energy of the system. So if you shoot two bullets at each other, all the individual electrons and nuclei start moving around, breaking bonds with each other, and you end up with a pool of molten lead.

      But when you do that with elementary particles there aren’t any component parts to move around. So when there’s “spare” energy knocking around in a macroscopic system, we get heat; but when there’s “spare” energy in a particle system, we get the generation of particle-antiparticle pairs. There aren’t any particles to dump that excess energy into, so entirely new particle (pairs) get created.

      Sometimes, you will see a composite particle raised to a higher-energy state; at lower energies in atomic interactions, those are pretty common; but in particle physics, it’s mostly particle-pair genesis.

      • Romulo Binuya

        Thanks, that makes two of us who believe that two lead bullets fired in a vacuum chamber on head-on collision will melt. I know heat in terms of classical physics, and the principle that makes the microwave oven works. Heat is energy as I understood it in terms of quantum physics, but we have no knowledge what energy really is, We do not have a picture that energy comes in little blobs of a definite amount, we just designate the photon to carry it and mathematically explain it.

        I believe that the particles and energy from smashed protons were pre-existing thus were released and not created.

  24. Thanks for a great article.
    Protons and neutrons seem to be very stable particles. Can you explain how such stability emerges from the internal maelstrom you describe. Hows does order arise from this chaos?

  25. Im looking for the protons mass and have been reading quite a few of these articles but remain a bit baffled.
    Its been said that it is not from the Higgs field which only accounts for a tiny portion of the overall mass, but is that strictly true? Isnt the mess of particles around those core quarks interacting with the Higgs field and would this fully account for the mass of the proton?

    If not, (and I suspect it wouldnt else the Higgs faq would seem a bit disingenuous) where is the mass coming from, the only answer I have been given is ‘energy’ which is unsatisfying. It doesnt seem sensical to say that the quarks require the Higgs field to have mass, but the additional energy just plain has mass. (Which is the only response I can find.) So how does energy have mass? Do we know?

  26. Isn’t it the higgs boson field had already done its job in the big bang? I wonder what the higgs field is doing now, perhaps maintaining the job it had done?

    • The Higgs field’s role in the Big Bang is unknown, and may have been completely minimal.

      The Higgs field does its main “job” now, because without it, ordinary matter would not form. There would be no atoms. Now.

  27. These quark/anti-quark pairs in the proton, why do they not annihilate each other? I am thinking maybe they do, but that you then get another matter/anti-matter pair that in turn gets you back to a quark/anti-quark pair. Is that right?

  28. Oh and one last thought. The idea of a proton full of anti-quarks, well doesn’t that quite neatly solve the mystery of why there is more matter than anti-matter. It would seem that there isn’t that much more, rather that just like a first past the post voting system – when performing in a way that people consider most unfair, the matter keeps nipping victory by very small orders of magnitude!

  29. Thank you for your answer. It is so neat, the way that the quark + anti-quark process matches in reverse the gluon + gluon process. And it is interesting to think that so much is happening in a proton. When I was a boy, I would sometimes look at something in a microscope and think it strange that I could see something beautiful; but that this beauty was hidden from sight. I used to think that it was almost as if the universe was making a lot of effort that was somehow redundant – quite ego-centric of me! But it seems no matter how big your microscope, you will always end up seeing something complex and dynamic.
    My point is that if you compared the constituent parts of a proton and an anti-proton, you would match up zillions of quark/anti-quark pairs, they would seem almost the same thing.

  30. Despite the craziness that Matt points out going on inside the proton, it is quite stable. Outside the nucleus, a neutron lasts about 15min until it decays into a proton and an electron. I don’t believe anyone has observed a proton decaying. I think that is very interesting.

  31. I all the time emailed this weblog post page to all my associates, for
    the reason that if like to read it after that my contacts will too.

  32. Condensed Matter Physicist

    I find your description of the structure of the proton somewhat confusing. It seems you justify these “zillions of quark-antiquarks” through perturbation theory. Is this viewpoint even valid, since the proton is a bound state? Secondly, perturbation theory works in QCD only at large energies, which I suppose is the case with the quarks in a proton, but the perturbative approach cannot be considered fundamental. When you say “zillions”, I assume you basically mean an infinite number, since you can go to infinite order in perturbation theory.

    I think you also forget other constituents of the proton. If you start to count all the virtual particles inside, why not include the virtual photons, electrons, positrons, W & Z bosons, Higgs, everything? And if this is the case, then is it not possible to construct any virtual combination of the particles? Therefore, the proton is not made of just “zillions of quark-antiquarks and gluons”, but inside every proton you can “find” every person on Earth and actually everything else in the Universe, as well.😉

    I think it is great that you try to explain these complicated things to the laypeople and virtual particles do offer a picture, which is more intuitive than many other ways to say it. I just wonder if people take this description too literally. Instead of talking about “zillions of particles” inside the proton, I would just talk about the quark fields and the gauge fields.

    I am not an expert in the field of elementary particle physics, so if I have misunderstood something fundamental about QCD, please correct me.

    • Well, your questions are ones that touch on how we explain difficult problems to ourselves, as scientists, and to non-scientists. In short, there are both scientific and pedagogical issues here.

      The problem with talking about the quark and gauge fields is that this is generally even more confusing to non-experts than the notion that the proton is full of particles.

      “zillions” is not intended to mean infinite; it is intended to represent only that there’s a lot going on. The number of particles inside the proton is large but not definite, so the number cannot in fact be counted.

      The need to understand that there are many particles inside the proton stems from the physics of the LHC. https://profmattstrassler.com/articles-and-posts/largehadroncolliderfaq/whats-a-proton-anyway/checking-whats-inside-a-proton/ If you want to explain processes like quark + antiquark –> Z or gluon + gluon –> Higgs, you don’t want to explain every time where the antiquarks and gluons come from. [You could try to argue that a proton has only valence quarks and that the antiquarks and gluons are emitted from valence quarks as virtual particles. But not only is this more confusing than stating that the antiquarks and gluons were there as real particles inside the proton, it is inaccurate.]

      Similarly, if you want to talk about quark masses and say that the up quark mass is a few GeV/c^2, you will have trouble explaining why a proton is so heavy. Of course you can say that all the extra energy is stored in quark and gluon fields, but most people have even more trouble visualizing that then they do visualizing a sea of particles running around.

      Of course, *none* of these pictures and ways of speaking is accurate. The proton is indeed a small non-perturbative object and the particles inside it are certainly not “on-shell” (i.e. defining which ones are real and which ones are virtual isn’t possible.) I’ve begun the process of addressing this here: https://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-structure-of-matter/protons-and-neutrons/ But in the end, even particle physicists and quantum field theorists do not have a precise way of talking about a non-perturbative bound state. We measure its properties; we calculate its properties using numerical simulations; but we cannot express it in simple mathematical or verbal terms.

      By the way, the probability of finding a gluon or an up anti-quark inside the proton is very very high; the probability of finding a W or top quark is exponentially low (i.e. will *never* happen no matter how many experiments you perform). More subtle are photons, and indeed, people are beginning to include them in their calculations, because precision has reached the point where we need to account for them too. And yes, there will be (extremely rare) electron-positron pairs in there too…

  33. Are all protons identical? Is the proton in hydrogen identical to a proton you would fins in phosphorous or plutonium?

  34. hi professor, plzzzz explain sir, that how excess neutrons in a nucleus can cause unstabalised nucleus ((as we know that the neutrons are needed to provide stability in the sense by providing nuclear forces)) then how sir, it can do so?????

    • The strong nuclear force in some sense involves, as one of its processes, exchanging one proton with one neutron [i.e. proton neutron].

      If it weren’t for electric repulsion of the protons — i.e., if you turned off the proton’s electric charge — the most stable nuclei (i.e. those with largest [negative] binding energy) would have equal numbers of protons and neutrons. Any sufficient excess of protons or of neutrons would make a nucleus that could become more stable (i.e. end up with much more binding energy) by undergoing a transition where a neutron becomes a proton (plus an electron and an anti-neutrino) or the reverse.

      With electric repulsion, things shift. It costs energy to have protons close together, so the most stable nuclei have more neutrons than protons, rather than equal numbers. But what I said above is still true; if you have way too many neutrons, the nucleus can reduce its energy by converting one to a proton, an electron and an anti-neutrino.

  35. Professor Strassler, I am watching DVD’s from the Great Courses about ‘Dark Matter, Dark Energy …” I was surprised that Professor Carroll explicitly states (so far – disk 2) that a proton is composed of two up and two down quarks, and a neutron is composed of the reverse. I went back on line to find that some blog sites are stating that while there are an infinite number of notional ‘sea’ quarks, there are only three with valences. That doesn’t make any sense to me – what are these super-quarks? I much prefer your description of a sea of morphing quarks which always has an additional three up and down quarks (if I got that at all right). So, what about those special quarks with valences? And what about Professor Carroll’s description – is he just keeping it simple for the lay folk?

  36. Whoops! I meant to say he said a proton is composed of two up and ONE down.

  37. Hi, I do think this is an excellent site. I stumbledupon it😉
    I will revisit yet again since i have bookmarked it.
    Money and freedom is the best way to change, may you be rich and continue to help others.

  38. Wow, awesome blog layout! How long have you been blogging for?
    you made blogging look easy. The overall look of
    your site is excellent, let alone the content!

  39. Neat blog! Is your theme custom made or did you download it from somewhere?
    A design like yours with a few simple tweeks would really make my blog stand out.

    Please let me know where you got your theme.
    Appreciate it

  40. Someone essentially lend a hand to make critically articles I might state.
    This is the very first time I frequented your web page and to this point?
    I amazed with the research you made to create this particular post
    incredible. Excellent activity!

  41. Greetings! This is my 1st comment here so I
    just wanted to give a quick shout out and tell you I truly enjoy reading your
    blog posts. Can you suggest any other blogs/websites/forums
    that deal with the same topics? Thanks a ton!

  42. michael anderson

    Dear Dr. Strassler,

    Firstly, thanks so much for your blog. Keep up the great work!

    A question about protons: I’ve heard that part of the reason people think there are three quarks in a proton is that when protons are made to collide, the data suggests that there are three little nuggets within the proton. Is this true? How is this possible? And if it is true, how is this reconciled with your description, where there are many more than three quarks inside?


  43. You stated “That’s right — the atom is emptier than the solar system! ” but isn’t dark matter suppose to compromise bulk of the universe?

    1. Can/does an atom contain subatomic “dark matter” (not anti-matter)?

    2. If colliders can produce antimatter, why did the original matter that it was part of existed and not annihilated by the antimatter in the first place? What keeps antimatter attached to matter if it can be separated in a collider?

    3. When the gluons disappear, what do they become? When they reappear, is it the same gluon? How could we tell?

    4. This is weering off a bit – but if nothingness can “exist”, which is really the only way to explain the the big bang inflation theory (faster than the speed of light, etc), then how can the pre-Big-Bang universe catalyze in to any other state without a catalyst, since there was nothing else but a singularity? Wouldn’t that mean
    a) the pre-Big-Bang state steadily became unstable, which is a dead end
    b) the pre-Big-Bang state was a transitional point in time smaller than the inflation time point, so something was before it
    c) there was a catalyst, as in external information, thus, singularities can’t truly exist and this is not a universe
    d) there is a perpetual big bang/big crunch cycle, which would explain b), and some other things
    e) god-did-it
    f) i’m nuts

  44. I am really inspired together with your writing abilities
    as smartly as with the layout in your weblog.
    Is that this a paid subject matter or did you modify it your
    self? Anyway keep up the excellent high quality writing, it is
    rare to peer a nice blog like this one these days..

  45. Hey just wanted to give you a quick heads up. The words in your content seem to be running
    off the screen in Chrome. I’m not sure if this is a format issue or something to do with web browser
    compatibility but I thought I’d post to let you
    know. The design and style look great though! Hope you get
    the issue resolved soon. Cheers

  46. Woah this kind of blog page is superb i enjoy understanding your content. Continue the good paintings! You realize, many persons are seeking round for this info, you could enable them to enormously.

  47. if quarks are always found in pairs why do we have an odd number of quarks in a proton/neutron?

  48. Professor Strassler– May I use your image of the proton (“MyProton”) to try to improve Wikipedia?

  49. Robert Watters

    Professor Strassler, my limited understanding, is that less than 2% of a protons mass is derived from the three valence quarks ( via the Higgs mechanism ), most of the remaining protons mass , I am lead to believe, is derived from gluon particle field itself ( Quantum Chromodynamic Binding Energy).
    Is the QCBE mass also derived via the Higgs mechanism?

  50. Greetings from Carolina! I’m bored to tears at work so I decided to browse your site on my
    iphone during lunch break. I love the knowledge you present here and can’t wait to take a look when I get home.
    I’m shocked at how fast your blog loaded on my mobile ..
    I’m not even using WIFI, just 3G .. Anyhow, very good site!

  51. The more I here about physics like this, the more physics reminds me of A Game of Life. Would it be an accurate comparison to say that with energy states being the cells, the particles we know are just the stable cellular automaton? I think using the game as an example would make it much easier to teach the concept of wave-particle duality if my interpretation is correct.

  52. proton decay has been estimated 10^33 years but hoe come we can measure such a long time what is the basic idea behind such experiments?

  53. Dear Professor,
    Proton is much simpler than what you have in your picture…
    Think double layers…
    I have some ideas about particle decay, why and how fast.
    It’s up to you if you want to discuss,

  54. Answer to “What is a Proton?”:

    MpRp=4LM <– Solution to the muonic proton charge radius problem and the source of mass of matter.

    Mp=Mass of proton
    Rp=Radius of proton
    L=Planck Length
    M=Planck Mass

    Mp=1.67262177774e-27 kg
    L=1.61619926e-33 cm
    M=2.1765113e-8 kg

    Calculated Rp=


    Calculated Rp=0.84123643e-13 cm

    The muonic hydrogen proton charge radius measurements of 2010 and 2013 approach this simply calculated


    This is what Richard Feynman was looking for – a source of the mass of matter and it should be in

    fundamental units, Planck units, and that is what MpRp=4LM is.

  55. Does anyone knows why this equation matches so well the 2010 and 2013 muonic hydrogen measurements of the cproton charge radius, Rp?

  56. Protons of what are sent through the Hadron Collider?
    How are they obtained and fired through the Collider?

    • Through a small cylinder of hydrogen. The hydrogen is then stripped of the electrons, and further accelerated.

      Then, the same math that can’t analyze a single proton (see proton radius problem/puzzle) is used to analyze two colliding protons. Only the insanely crazy would attempt.

  57. really an awesome article … i have read in books and on Wikipedia also that protons are made of only three quarks but now i know the truth … thanks a lot for sharing it with us… but i have a question that … how proton’s (+1) charge is defined if its made of lots of quarks and gluons ???

  58. What is the source of the strong force that “confines the quark elementary particles into hadron particles such as the proton and neutron”?

    I see no source of this force mentioned in the literature. Is it truly conjured up out of thin air to “explain” measurements and be consistent with the theory?

    Why is the proton not considered a fundamental phenomena like a vortex or dual-toroidal vortex in the aether or fabric of spacetime? {Density of aether is D=6M/(piL^3) where M= Planck Mass, L=Planck Length}

    By accelerating these protons around the LHC and colliding them and looking for fundamental particles is missing the point. There is nothing such as a particle, everything is information and vibration in the fabric of spacetime.

  59. Matt,

    Like many of your readers, I’m a non-scientist who has developed a fascination with teensy-weensy particles and energy sources in my 70s. So I hope you’ll bear with the naive questions below.

    Reading comments from a few years back, I saw this in one of your answers when asked where the nuclear force comes from:

    “The strong nuclear force is, like electric forces, a fundamental force in nature.
    These types of fields are fundamental ingredients in the universe, as far as we know; there is no explanation for them in terms of other things.”

    Is this the ‘no thing’ out of which the Big Bang exploded? Does that imply that it is a constant…underlying and energizing the universe? Is this a force out of which all matter arises? Is this what is called Dark Energy or Dark Flow?


  60. Getting a fast cash advance payday loan is convenient,
    secure, by far the most effective method to have quick cash for Americans with limited credit Monaco Theme make sure the check is filled
    in correctly and plan with a date that can definitely
    help you.

  61. Professor, this is driving me bananas! I was getting really comfortable with your explanations that electrons stay in ‘orbit’ around the atomic nucleus because they cannot drop below their lowest permitted energy state, and that, while neutrons can spontaneously decay into protons, the reverse process, proton-to-neutron, only happens in the extreme pressures inside stars – or the LHC. Then I read somewhere that some isotopes of common elements display both types of beta decay. For example, in Potassium-40, neutrons change into protons, transmuting the atom to Calcium-40 and releasing an electron and antineutrino in about 89% of decays; but 10% of the time an electron drops from the inner orbital, is captured by a proton which transforms to a neutron and releases a gamma ray and a neutrino. Result: Argon-40. And there are even a small minority of cases where the proton turns directly into a neutron, releasing a positron and a neutrino. No need to wait for star-core collapse: the bananas in my fruit-bowl are breaking the laws of physics on a daily basis! This calls for one of your inimitable explanations!
    from Stephen Kurt, England.

  62. I liked it.
    I got many answers.

  63. Antonio parrella

    Hi, I’m a year 10 high school student an I done a few physics and chemistry classes but nothing that gives me much understanding of this stuff. I just wanted to ask that if a protons is made up of heaps of these particals but most of them are canceled out by their anit partical on leaving a fewto express their properties. Why is the majority of what we see made up of protons neutrons and electrons and not other random particals that have say 100 more up quirks than anti up qurks or any other random combinations of imbalances. Why isn’t there more diversity in these partials if there are so many different possablities. Are they actually their but we just we just not interact with them.

  64. Mark Steven Hearnden

    In some ways I’m not surprised in Dr Stasslers findings – seems the micro universe is far far bigger on it’s own scale than we ever expected or imagined – maybe much more complex too. I did study physics some years ago, but unfortunately have forgotten most of what I was taught back then.
    I am, even so, a very thorough researcher & I do remember something about nuclear physics & binding energies – so I was just wondering if Proff’ Strassler had considered the possibilty that maybe Quarks were so dense that most of their rest mass energies were taken up in binding energy – which if I remember correctly does not constitute part of the rest mass of a particle. the remainder being of course kinitec energy & potential energy – which is summed algebraically – allowing for relativistic effects. There is of course the relativistic mass – it has no energy of it’s own as such, but it may exist in cunjuction with other types of energy – such as electromagnetic waves in photons. Indeed relativistic mass may even turn out to be real mass – but a kind of float card in the deck, able to adopt any guise – some of my own study seems to be pointing to it, though I wouldn’t postulate it at this stage – even so I’m very intrigued by certain revelations that have come to light. Is it possible somehow that the normal mass of individual quarks may increase by many magnitudes once they have come together to form larger particles, such as the proton.

  65. Mark Steven Hearnden

    If in relativistic situations matter is converted to relativistic matter – then maybe it’s possible that potential energy & kinetic energy have been ‘apparently’ lost – thus creating matter with no internal energy of it’s own – or so it seems !
    This is an example of a super low entropy system, where most of the internal random motion is lost – so of course also there is no binding energy either – or so it seems – we must remember – this is a relativistic effect. My point is that such things should be considered when trying to interpret just what comprises different types of matter in different situations.
    I fear relativistic mass as been shrugged off as illusary too easily.

    • The relativity is dead because there are scenarios when kinetic and potential energy do not follow the changes as they are predicted by the relativity in inertial frames of reference.
      There is an experiment that can detect uniform linear translatory motion.

      • Mark Steven Hearnden

        Thank you Jano – I shall be following up on your advice in due course I hope – but I have much revision & further study to go though first – but I do take your comment seriously. I should point out however that I believe the mechanics of Einstein’s Special Relativity to have been misunderstood, even by Einstein himself. I have also discovered flaws in Lorentz Transformation Theory – specifically in relation to Lorentz contraction – but this is not because the theory is wrong, but because it has been grossly misunderstood – again – possibly even by Lorentz himself. Seems I have found at least one alternative solution to the many paradoxes associated with it – without this alternative solution Lorentz Contraction is in fact a complete failure & cannot really predict anything with any reliability at all.
        I’m endeavoring to take these two theories along a different road – more consistent with General Relativity & Quantum Theory & Particle Wave Mechanics. Nice to get a reply all the same – I must be doing something right !.

  66. Mark Steven Hearnden

    Higgs Boson, Shrodingers cat, direct particle_photon_particle transmutation – teleportation – seems like the asymptotic curve of the old quantum probablity theory could be making a come back – all this is great news for classical quantum physics.

  67. Mark Steven Hearnden

    Either way Dr Strasslers thinking is like a breath of fresh air in the musky claustrophobic stale air of modern contempary physics – whether he turns out to be right or not – we really needed this opening.

  68. Hello,
    I’d like to ask a question.
    Are there any resonances observed at LHC when proton is being accelerated?
    Specifically in the range from 20km/s to 500km/s?

  69. So Zillions is a number that scientists actually use is it? 10/ % accuracy actually means something does it? The reason behind the apparent chaotic behaviour of the particles inside a proton can be ignored because the proton is so relevantly small? It’s just just a white lie for scientists to have claimed for years that there were 3 Quarks inside a Proton? Virtual particles really do exist?
    My wife had an Aunt who was unwell. She spent most of her time doing jigsaws. When she could not get a piece to fit she cut it to size. She had a large collection of very fine looking framed jigsaws
    Since at least a large part of particle physics science appears to be speculation. I’ll get in on the act I’ll speculate that at the centre of the proton sits an extremely small but also extremely dense Graviton. Around which all these Quarks and Gluons are orbiting. I suppose 1 am suggesting that the inside of the proton is somewhat analogous to the Star systems of the Milky Way orbiting a possible black hole.
    How did the graviton get into the centre of the proton Again this is just speculation. Maybe it didn’t. Perhaps the question should be turned on its head. How did the quarks. Gluons. And the rest of the dancers get there? JDM.

  70. Sorry Jano. I’m new to this site my previous response was to What’s a proton anyway?

  71. Some probably dumb questions. Is it possible to make an anti-proton by putting three Down quarks together, which would give a -1 charge compared to a proton’s +1 charge? Could it be done by bombarding neutrons to release their Up quarks? Maybe with high speed electrons?

  72. I don’t have an accelerator but I was looking at slow motion video of a nuclear detonation. I read up on how a neutron can “split” an atom and give off two neutrons. That indicates that a proton was “dissolved” since 2 neutrons no longer had an attraction to a proton [that was once there]. Where did it go?
    From the looks of the video a wide spectrum of light was released and seemed to be an expansion of space-time from what had been 1kg of uranium that occupied approximately 54cm cubed of space [I’m not sure what the actual proton space inside the atoms would be but I’m sure it would be a much smaller volume than the whole atom].
    If the space expansion diameter of the chain reaction is around one 3rd of a mile diameter it lines up with c cubed [669 meter cubed per kg of matter].
    Apparently, that is what protons are. Energy density to the point of compressed space and time. Compressed to the barrier limit of c and the corresponding relative rate of time of c.
    Which is why E=Mc2 can be an equivalence of energy within atomic core matter. Except one of the c of (c squared) should be something indicating a relative time rate. E=Mc/rtr. Show both space compression and relative time barrier.
    What was in the proton before it left the barrier? Exactly what came out of it. A bunch of lights.
    E= (1kg worth of protons [which is M]) times (inflation of space by 669 m3/s) divided by (a very slow rate of time .000000003 s/m). So along with a whole lot of light [E] you get inflated space and the time of that space speeds up to our 1 second = 1 second [which is the time at our ambient energy level].
    What do you get if you add more energy to something already at the barrier [by increasing it’s velocity in an accelerator]? You get a heavier atom that can’t quite form another outer proton shell but develops lesser particles.
    Just throw in like/unlike space-time repulsion/attraction and you get a pretty good feel for why electrons [lesser condensed light] orbit and why there are multiple shells. Also, maybe an understanding of what anti-matter is and why there is always a negative [anti-matter] particle next to any given particle.
    I suppose the trick is to develop unlimited energy, anti-gravity, FTL communication and warp drives with better understanding of how space-time is warpable by man. Past, present and future exist all at once [but in different space-time densities]. The space of protons are in our past. I hope to see video from proton readers some day [ if the gravity length light can be caught and deciphered].

    • If you want to split protons, I would guess that the ideal way would be to have hydrogen gas under the maximum possible pressure as the target.

    • I’m less of an expert than anyone here but I’m sure the Proton does not “Dissolve”. The added Neutron increases the size of the target atom just past it’s point of stability. The atom then comes apart and the binding energy of the old system drops to that of the new system and the rest goes out with the observed spectra.

      Someone will tell me that I’m describing slow fission and should read even more but that’s my take.

  73. Hydrogen gas…trying to get me to thermo-nuke myself? So how can a nearly continuous neutron stream be formed from lab equipment? How can a low-energy-region be accelerated fast enough to form a high-energy-shell to allow penetration of outer-atomic neutron to at least hit the first proton with a head on collision and release the energy? How can it be done without using radioactive materials? Metamaterials seem to be able to make low-energy-regions.

    “Dissolve” —neutron being a space of low energy compared to the proton. Lower energy injected into high energy space-time i,e. proton [after head on collison (to overcome unlike particle repulsion)] causing inflation of proton space and acceleration of proton time. Thereby releasing some light E [from the proton M]. The result of exponential cascade of inflating space and time as the proton loses all it’s light to the point of “dissolution” to ambient energy levels outside of the atom.
    E=M c/rtr where rtr takes place of a c that never should have been there to start with. Einstein jumped the gun while Poincare pondered on [or lost sight/interest in] what to put next to the c of his E=Mc.
    “Dissolve” is my way of saying space inflation – time inflation; to light released [to outside the atom since the proton space can no longer be held in that atom]. BOOM! No more proton. Just the light that was in it; now flying away free to bounce/skittle along the edge of our lower-energy c/tr barrier until it hits some other space-time [with it’s own c/tr barrier] and changes frequency again, over and over.

  74. So what is keeping the light(s) in the proton that prevents it from inflating in space-time as it loses light?
    It wouldn’t be that protons are absorbing external light as fast as it is emitting it would it?
    I imagine that if you could see out from within a proton it would be a very very bright view since all incoming light would be frequency shifted to a higher frequency [even most of the longest of light waves]. And then there would be the time difference making the proton receive all those lights very rapidly. Of course protons don’t “see” but if they could the intensity would be blindingly bright.
    Gama rays and cosmic radiation are high energy. Perhaps protons experience [what would seem to it to be] those radiations constantly. Some of those lights [from our 1 second = 1 second perspective] would be just regular wave lights and maybe low energy electrons. Proton time is 1 second = 9.5 years of our time.
    9.5 years of light in 1 second is pretty intense.
    Hard to tell what’s happening.

  75. A/c to your concept we are opproximatlly know from which part of energy the qaurks are formed.
    B/c really the qaurks are energy .

  76. Doesn’t energy always travel at light speed? The quarks have inbuilt energy as does every single particle but they are not energy.

  77. Michael, quarks have inbuilt energy and they are not energy… is a logical contradiction.
    Quarks are energy!

  78. You are saying that quarks travel at light speed, or that energy doesn’t always do so? I always thought quarks had mass?

  79. Kinetic energy is still energy and it travels at v… 1/2mv^2

  80. If I run, I increase my kinetic energy but I am not made of energy. This is just the inbuilt energy that quarks have, which makes sure they are never at rest, like an electron eternally orbits a nucleus, unless acted on by another force or charge.

    • What are all chemical bonds in your body? Potential energy!
      When you run, accelerate, you take that potential energy and transfer it to kinetic energy.
      You are made of energy! Energy flows…from one system to another.
      The bulk of energy that you call quark is a system. That system can increase or decrease its energy based on the external force.

  81. The body is a bio-electric engine. It generates electricity using stored materials. You can’t really call a fat person someone with great potential energy. My laptop has energy flowing in it as I use it but no one would say it was made of energy. What is the external force acting on quarks to add to or take energy from them?

  82. Are gluons “external” forces?

    • Proton has a shell. It’s a charge. When the charge is accelerated by an external force then everything in the shell is accelerated as well. Different things happen when protons smash each other at 1m/s or at 1000km/s. They have different kinetic energy at different velocities.

      • OK, you are adding kinetic energy to the “whole mass” but that is nothing to do with gluons or particles being energy. I thought the quarks were the charge? Two Up and one Down, so 2 x 2/3 = 4/3 added to 1 x -1/3 gives a charge of plus one.

        • When particles gain kinetic energy they gain mass. Particles interaction with the vacuum fluctuations changes at different velocities, that might have a say in it.
          When we talked about external force acting on quarks then the force has to go through the shell that is a boundary of a proton. Proton does not interact with the outside world as three quarks. It’s a one shell of a charge.

          • Particles gain mass as in they have a greater impact. Vacuum fluctuations would be a constant and with fast moving protons in a particle accelerator could be pretty much ignored here. Protons do not have an actual shell any more than a hydrogen atom does. It is an area which contains the constituents of a single proton so the entire group acts as if it were a single particle.

  83. An effect of a charge moving through a field should not be ignored. We were talking about an external force acting on the charge, the protons velocity would be changing. The quarks vibration would increase in the proton. The proton would gain energy. The Lamb shift is a good example why the vacuum fluctuation and its effect should not be ignored.

    • What field? This is a bog standard proton. OK, maybe it has been accelerated but so what? If there were so many fluctuations and unknowns in a particle accelerator, the results we get from them would be worthless. If quantum fluctuations were such a big deal, atomic force microscopes would be worthless and even electron microscopes would give poor pictures at very high magnifications. I think we can ignore the proton gaining energy since to give it sufficient that it literally blows apart without impact is unknown (as far as I know). Does the Lamb shift have anything to do with quarks in a proton?

      • The Lamb shift is a prove that the vacuum fluctuations, the field that is being created by this fluctuations changes energy of electron that moves through it.
        If electrons are affected then why not quarks and protons?
        The best example that protons and quarks change energy and mass is hydrogen fusion to helium.
        Protons and quarks are energy and the energy in them can change.
        That’s it, I leave it with you.

        • Electrons are 100% different from protons. There is no comparison. In that fusion, neutrons are created and again, there is a big difference. A neutron is not just a proton and an electron as we see from the Sun itself which emits heat, light and neutrinos as by products of the fusion of the four hydrogen to one helium atom. Protons are incredibly stable unless maybe you heat them to a few trillion degrees to form a QGP. I don’t think any normal amount of energy is going to materially affect them.

          • Does the mass of helium equals 2xproton, 2xneutron and 2xelectron?

          • It is difficult to get exact “weights” of these particles but the helium comes out slightly less than the weights of those six particles separate, which would be due to the losses I mention above.

  84. So 6 particles plus force carriers that keep the helium together and the mass is less.
    How come?
    Do quarks change their mass/energy or not?
    Can we ignore proton gaining/loosing energy?
    These are the facts in front of you.
    Take care Michael.

    • The force carriers weigh how much? A neutron weighs noticeably more than a proton and yet in a nucleus as in a helium atoms, it weighs less, so causing the helium to weigh less than it’s constituents. As the three quarks make up 10% or is it 1% of a proton, how can you say they gain or lose mass, when we do not know of upto 99% of what is in a proton (and neutron).is? it sounds to me like in a nucleus, there is some sharing going on so the loss that we see in this fusion as in the Sun’s energy is the excess, no longer needed.

      I find the idea of the 90-99% missing mass of a proton being virtual particles which pop in and out of existence but there is always enough there to provide the missing mass, ridiculous. I think there is smaller particles we cannot see which is adding to or being taken away from quarks, changing their overall mass.

      Protons from the Sun are actually quite low energy.

  85. Awesome issues here. I’m very glad to peer your post.
    Thank you so much and I’m taking a look ahead to touch
    you. Will you please drop me a mail?

  86. Hey, professor Strassler. Hope you can answer this albeit it’s been a while since you posted this article.
    An Up-quark can split into a virtual Down-quark and a virtual W+ that merge (all but) instantly back into an Up-quark as in u -> d + W+ -> u. Yet in your snapshot of a proton there are only quarks and gluons there.
    Does this have a ‘real’ effect inside a proton (or d -> u + W- -> d in a neutron)?

    • This is the answer from prof. Strassler from another source:

      “In quantum mechanics everything that’s not explicitly disallowed can and will happen. However, the probability can be very small. The probability that, if you took a “snapshot” of a proton, you’d see your process happening is one part in trillions. Similarly there are electrons in the proton too, since u –> u + photon –> u + electron + positron can happen. But again, extremely rare… one in billions. Meanwhile, by contrast, everything I drew in my picture will be found in *every* snapshot you take of a proton.”

  87. First time in 48 yrs I can say I understand a little bit of physics 💥🙀

    • A proton is 10% known an 90% unknown. I would guess that the unknown is uncharged particles, so we cannot detect them. Krauss’ idea that they are magic particles which “come and go” is unlikely.

  88. This subject is overwelming, I am one of Jehovah Witnesses, and to think of how small I am compared to the universe makes me a happy person to know that God cares for me personally. You are a great educator the way you explain things makes me fell like am smart because I could actually underftand the subject.

  89. The god of any religious book is only as smart as the people who made them up. The idea that such an ignorant being could create something as complicated as matter let alone DNA is not feasible.

  90. How do we know what’s in a proton without destroying it? Isn’t that just examining remnants in an attempt to guess the state (content and structure) prior to its destruction? Perhaps the content is pure energy which converts to matter when the proton is opened.

  91. A proton is too small and too stable to examine any other way. We have to break it up and see what emerges. If it were a shell full of energy, we would detect that energy when we “smashed” the proton. If you could somehow reverse engineer e=mc2, then it would take the equivalent of about a 43 megaton bomb going off to produce just 1 kg of matter.

  92. My questions were influenced by the paradox of “Schrodinger’s Cat”. We can’t know the internal state of the proton until we smash it. Then we still don’t know how the results relate to the original state, since we don’t know how the method of smashing and the environment influenced the outcome. Additionally, the results are not consistent.

  93. We know the proton is part made up of three quarks. They are consistent in results. Since they make up the proton charge, that suggests that the other maybe 90% is uncharged. These to me would have been a good candidate for the Higg’s bosons had not a fraud already claimed the title.

  94. Hi there,

    I now know that the proton is really stable. I just wonder how dynamic is this stability.
    So inside it’s a total mess, and also there is the process of transformation neutron-proton -> proton neutron.

    I wonder how often this transformation occurs, and also if all the particles and bounded inside the proton, or if there are exchanges with the outside?

    Thank you for responding to our curiosity!

  95. Professor Strassler, what do you think about the model described here http://arxiv.org/pdf/quant-ph/9503009.pdf ? It seems very compelling

  96. Zeca. For the proton to be as stable as we think it is, it’s contents are probably part of a structure in the way that the sub-atomic particles that make up elements are and so they become stable. As an atom is mostly empty space, so protons may be too. A neutron only seems to be stable as part of an atom, otherwise quickly becoming a proton (and other stuff), which as far as we know is stable.

    I have wondered if electric stars are possible in that a neutron star near maximum mass may find neutrons continually breaking up and reforming so there could be movement of particles in the way electricity is electrons moving in a wire. The very fast spin of a neutron star would help particles move in a given direction.

  97. I think I may have finally figured out what the Higg’s field “is” in relation to “my terminology”.
    Using E=M(c squared) or E=M(c)(c) and inverting one of the c “1/c” to be termed as unit (tr) *measured in seconds per meter. (tr) being a relative rate of time. I’d use ” t ” but that’s just an interval of a rate of time.
    So that now E=Mc/tr where c is a size of relative time that coincides with the rate of relative time.
    Then simply find for M as M=E(tr)/c.
    Looks as if the volume of c is “slow” as a relative volume then the (tr) as relative rate of time will be slow also. So when c=1m/s then (tr) is where 1 second of M time = 2.8 billion years at the time rate of E (aka, (c/tr) or anti-matter). And possibly, the mid point rate of time being the mid point between E and M and that rate of time difference being 1 second = 9.5 years.
    The importance being that (tr)/c is possibly the slowest relative rate of time that is possible and thus the Higg’s field. I call it proton state. I sometimes wonder what the rate of time is for some of the atomic shells (maybe brief and near tr/c states).
    I’ll try and clarify; Space is a void but there is forms of time in it (as light waves). Space itself does not compress.
    “space-time” is a bad term in my opinion. Replace “space” with “relative rate of time volume” and “time” with “relative rate of time” “rrtv-rrt” for short as a replacement to “space-time”.
    If a person considers that light is a fluctuation of relative time (and volume) that swings between closer-to-matter and closer-to-anti-matter sides. And then also considers that faster rates of time are attracted to slower rates of time (while also being mostly reflected from tr/c state and near tr/c state [if the side of the light wave that interacts with the “field” causes tr/c AND is reflected Newtonian/Drude billiard ball style quantum vector reflections and force).
    Then a person might be able to understand gravity since light waves change state and as it does then there is attraction and sometimes reflection [with the net force (on proton state) being a pull towards the most light] {inverse square law considerations}. Also leads to understanding of magnetism as a possible near tr/c shell interaction with same reasons for attraction and repulsion (as reflection force) and a polarized field interaction like that of gravity but different.
    Basically, I see Higg’s field as being tr/c state and mostly unable to accept more “slowing of time” since time can only be so slow.
    I calculate the velocity of E (antimatter) as 206 light years per second. c/tr where tr = 1s/m (If I remembered my notes correctly). I have to wonder what a signal receiver of anti-matter would be…maybe monitor an isolated, small Bose-Einstein condensate for the near E side of an extreme long wave of light. Tough stuff considering that much of the E side (fast side) of a light wave rides directly behind the slow-time-volume front of the wave.

  98. As silly as it may sound, why can’t fundamental particles be destroyed with heat? I know they can be brought literally to a standstill at 0 Kelvin, but heat for some reason only excites them to a higher energy level? Thanks

  99. Heat just adds kinetic energy and makes them bounce around more, unless they can be held in place, like inside a star. The big bang says enough heat can destroy them but that is way beyond any temperature we will ever manage.

  100. Thanks for your input Michael. Being rather new at this universe thing, WAGs &Questions come at me about as quick as flies to spilled ice cream. Question! Is our solar system unique to our Milky Way? To the universe? I know that’s a hand full, but I’m thinking there is deep thought on the subject. But as of now, do we know anything for certain?

  101. Solar systems may be nearly as common as stars. Since 1994 we have come to detect thousands of large planets close to nearby stars and even see a few of them. With better telescopes we will see the smaller Earth like planets in the “goldilocks zones” .

    We will also detect gases in their atmosphere and not only know life is there but maybe even industrial pollution too. Water and the ingredients for life are common outside our solar system so there could easily be billions of billions of races of beings out there, separated by unimaginable distances.

    Though SF relies heavily on it, we cannot be sure that it is possible to travel faster than light. BUT travel at an acceleration of just 1G force for nearly a year and we could almost reach light speed.

  102. I have little doubt that in a universe of such immensity, other civilizations must surely exist. Perhaps not as we may think of them to be, both physically and mentally, but as they might be, none the less.
    Another question if I may? Comparing the universe to the raisin bread analogy. My take on it is: Visualize raisin bread raising with a single raisin in the exact center. Even better yet, make the loaf perfectly spherical with that raisin at the exact center. In which direction will that raisin move as the bread rises? A question concerning the center/less universe.

  103. The idea of expansion is that everything moves away from everything else, so we cannot trace everything back to a certain point in a certain direction.

  104. I try to understand the reasoning, but isn’t it sort of a cop out? Say a three dimensional sphere is displayed as a two dimensional checkerboard with an odd numbered sequence of squares, like 3,5,7,9, etc. If you begin moving squares away from each other equally, the center square will not move. The same applies to a board with even numbered rows. Except, as the squares began to move apart, a void at the center will increase proportionally to that of the squares. As the squares move apart, the hole at the center would increase in size accordingly, but will remain stationary. Would that not be a center, regardless of how expansion began?

  105. The idea of everything moving away from everything else means that the movement is in all directions so some are moving towards the “point of origin” and some diagonally to it, etc.

    I don´t believe in the big bang. It has no credible origin, inflation is an unproven idea and run it backwards in time, so everything gets closer together and denser so black holes form and at some point while the Universe is still fairly large, everything is inside a black hole, and black holes do not expand.

    You could also check out this anomaly:


    But the Universe does appear to have had an origin over 13 billion years ago since galaxies we see at such distances are small and simplistic, not having merged to form the large galaxies we see now.

  106. Me being a believer in a cyclic universe, the BB does nothing for my imagination either. However, I do think there was a very quick and heated expansion some 13+ billion years ago that has brought us to this point in time.
    As I say Mike, being an untrained novice at this universe thing allows me a free hand to ask questions that may seem a little mundane, if not downright ignorant. What I do appreciate is that you haven’t given me answers that overburden my lack of intellect. For that, I again say thanks. Now, another question. “What ever happened to all of the Antimatter that was supposedly annihilated in the first 1 billionth of 1 billionth of 1 billionth of the first second after our universe was born? Since neither matter nor energy can be destroyed, shouldn’t this rule have also applied to antimatter having no place to go? As I understand it, the universe was very small at the time and depleted antimatter would have had to find a place to coalesce quickly. I’m thinking it was all pushed into the core of an expanding universe and that’s the tile that doesn’t move. Don’t shoot or shut me down!!! What are your thoughts along this line, if any?

  107. Has anyone try to reconstruct the impact of proton to get the actual structure of a proton? The shape sequence up subparticle in a proton.

    • A proton consists of two up quarks and one down quark, and gluons holding the lot together. These make up as little as 1% of the mass of a proton. People like Krauss think the rest is matter appearing and disappearing which does not explain why this happens there an not everywhere else. I think there are more particles we have yet to find which make up the rest of the mass of the proton.

      Super computer simulations of collisions may help some but ultimately you get out what you put in.

  108. I am not a believer in that anti-matter either. It is a part of the big bang dogma. You have a billion anti matter universes of material annihilating a billion and one matter universes of material, the resulting explosion would make the big bang look like a fire cracker and spread the remaining matter so thin over such a wide area that there would be no stars. Just lots and lots of energy. Memory says that just 1kg of matter and anti matter exploding is equal to a 43 megaton nuclear explosion.

    Expansion is supposedly increasing thanks to the magical dark energy meaning the Universe cannot collapse and be reborn again in another big bang. As things move apart over billions of years, for whatever reason, local gravity becomes less so basically if the Universe did not have enough gravity to collapse itself when very young, it is not going to have the gravitational pull to do that when it is very old and spread out.

    It is mathemaicians who think they know everything who insult people when people ask questions which contradict their infallible beliefs. I will answer what questions I can.

  109. Mike, can you give me a link relating to why billions of other universe’s were involved in the creation of our universe?

  110. It is all speculation. If there can be one Universe, there can be more Universes, as in a multiverse. As matter and energy for our Universe had to come from somewhere, this is a possible source.

    We assume that black holes last pretty much forever, but maybe not. Gravity escapes a black hole merely travelling at light speed. We know escaping from a neutron star which can have an escape velocity of up to 2/3c, photons continue travelling at the same speed but just red shift. Maybe photons escape black holes too, redshifted to the far end of the electromagnetic spectrum? What if black holes eventually lost just about all their energy as radiation and literally fell apart?

    Gravity is supposed to bend light´s path, BUT the gravity sources we look at; be they galaxies, stars, Jupiter, etc have atmospheres, gas, etc and we know gases refract light, so does gravity really bend light rays?

    Too much is accepted without question in astronomy and cosmology.

  111. You’re absolutely right Mike! And that’s why I’ll not question Black Holes for their purpose or function since they may have a specific need in nature? Like I say, I’m a “cyclic nut” and not very good at explaining even that. But, what if black holes are a type of conduit, connected directly back to the very core of our universe’s creation?

  112. Decades ago there was talk about worm holes connecting different areas of space and to white holes. The way I see it is if a black hole did any of that, it would quickly cease to exist as it lost so much mass.

    The point source of mass inside a black hole is probably nonsense as such would not spin, and black holes spin (we see from their event horizons). We know that neutrons can exist in neutron stars with an escape velocity of 2/3c so why not basic particles like electrons, quarks, etc which seem to have no smaller structure, form a ball inside a black hole and that spins at maximum speed?

    I like to think the Universe is somehow cyclic but that would have to mean that black holes are not virtually immortal.

  113. The word immortal is rather perplexing to me, so I’d much rather think along the lines of longevity or cyclic. Black holes were only a thought, nothing cut in stone. All of that aside, I’d still like to get a better understanding of why scientist argue so vehemently why our universe has no center since they share no proof positive that it doesn’t. Since we can only see approx. 9.5 billion light years around us, we can only presume by extrapolation just how large this universe is, and its entire functionality. Yet the little I know of Euclidian math makes it almost a certainty to me that we live in a three dimensional world along with a fourth called time. My problem is in designing the scenario of a big expansion. One progressing to include a fully grown universe, then through attrition and entropy, return cyclically to a compacted anti-matter world, thus allowing the continuance of another new universe.
    Mike, would you give me a bit more of your expertise on a center-less universe? I believe science will eventually find that galaxies only seem to follow specific trends of equiflow, but which in reality don’t exist. At this juncture of expansion, I think attraction and repulsion are a direct cause and effect of magnet influence, one galaxies power over another.
    I know all of this reads like a bunch of B.S., but having researched so many books, papers and manuscripts describing the different processes, this is just a piece of a big puzzle I’d like to see unraveled, sort of like the Schrödinger’s Cat puzzle. I would appreciate constructive criticism at any level and your input, if you wish?

  114. I don´t believe in the big bang myself so I can only give you the accepted dogma of it. Certainly the Universe seems to have had an origin but how is in doubt. Talking to professionals on the subject, all they are going to do is mindlessly parrot dogma you can find in any good book or decent internet site. But there are too many fudges. This is interesting:

    We can see a bit over 13 billion light years away. If everything is moving away from everything else then the furthest we can see is something moving away from us, and that we too are moving away from, where the combined speeds equal to almost light speed. Not that it is moving away from a stationary US at light speed.

    If redshift becomes faster than light, we are not going to see anything, so we see a haze at the boundary and what is beyond that is pure guesswork.

    I dislike the use of time as a fourth dimenion since time is merely a man made measure of how things change. It is thanks to mathematicians that they think of time as a real force that can be slowed down but not speeded up.

    Matter is not going to change into anti matter, the same as matter does not change into energy, but comes with inherent energy built into it. Dark Matter is probably matter which no longer has any energy left so is literal dust at the smallest size, and undetectable because it has no energy.

    Inflation is just an unproven idea used to explain why a lumpy universe (like the great attractor) is not really lumpy. Dark Energy is just an unproven fudge, needed to make expansion work.

    Dogma has it that there is endless new space appearing from where? since space is apparently not just the distance between two objects but is an actual material which bends, stretches, etc. Which does not explain why black holes don´t suck the lot in.

    Galaxies are supposedly moving further apart without actually moving. It is just the distance between them that is increasing (allowing for local gravity and anomalies like our local group where small distant clusters should have moved away long ago but did not) This is the real fourth dimension like blowing up a balloon with dots on so the dots move apart while actually staying in the same place on the balloon´s surface. But this fourth dimensión comes with serious problems as in what is driving it, what is on both sides of the Universe in four dimenional direction, etc and of course, how can space infinitely expand or increase?

    The real problem is that scientists are often afraid to admit they do not know so will dress guesses up as facts. Like the Higg´s boson. Like Jehovh´s Witnesses, they kept looking for it and not finding it where they claimed it was and so saying it must have a higher mass and higher energy and still not finding it again. Eventually they were ready to give up but they found a particle around their latest guesstimate and without any evidence that it did what was claimed of it, said that was it, and all the sheep accepted this lie, and they even got a prize for this lie.

  115. Orien, if you’re having trouble getting your head round the idea of a uniformly expanding universe, try the balloon model. Imagine all of 3D space represented by the 2D surface of a steadily inflating, spherical balloon. Stick adhesive spots on the balloon, a uniform distance apart. As the balloon expands, the distance between each of the spots and its neighbours increases equally. By simple imaginary measurement, and logic, you realise that each spot measures other spots on the ballon surface as receding exponentially from it, depending on how many spot-spaces they are from it. And yet none of these spots is at the centre; there is NO centre to the balloon surface. The spots represent the galaxy clusters of the universe. Why represent them with adhesive stickers rather than just mark the ballon with a felt-tip pen? Because the galaxy clusters do NOT expand, gravity holds them together, while the vast spaces between them get even vaster.
    If you’ve followed me so far, I invite you to consider what might be represented by the interior of the expanding,spherical balloon. It’s the PAST! Drop vertical lines from those surface spots and the lines will converge at the centre of the sphere, the beginning of time, the start of Inflation. And the world outside the ballon, into which it is expanding? The Future, of course!
    I hope this helps you.

    • Stephen. The problem with the balloon model is that the 2D surface expanding in a 3D environment goes up a stage so we have the 3D Universe expanding in four physical dimensions. Where is proof of a fourth physical dimension? In what directions is it?

  116. My problem Steve? Scientist took a long look at Hubble’s fantastic equations, liked what they saw and so, today cosmologist are busy trying to justify the errors.
    I did like your description of looking back into the past along lines of radius converging down into center of our universe.

  117. Mike, while I agree with practically everything you propose, I’d like your reason for saying matter is not exchangeable with anti-matter. Without that transition, I’m not comfortable with my idea of a cyclic universe. Please give me your reason for advocating such.

    • obkelly. Matter and anti-matter are mutually destructive. Put a proton with an anti proton and BANG. Both are annihilated. How could one form change to another? It would have to somehow happen literally instantly, without any time involved, because if there were, the lot would just annihilate each other.

      The big bang idea has it that there was a little more matter than anti matter originally (a billion and one universes worth compared to a billion) so that survived while the rest annihilated each other.

  118. Mike, Isn’t that what scientist continue to advocate? The “instantaneous conversion” of something unknown into sub-particles of matter? Was this conversion a Singularity from outside our realm, or was it a Recycled event from within our continuum?

    • Outside our realm as in part of a multiverse? Singularities as far as we know are 100% stable so cannot inflate or expand, so cannot magically produce a Universe.

      The idea that matter and energy are interchangeable (e=mc2) requires two 100% different things to be interchangeable.

      There are other ideas on how the Universe began and I think we should move away from the singularity which has no credible origin, which cannot inflate or expand, and then material way, way beyond black hole density expanding.

  119. Steve, With nothing to go on other than what I read and view in videos, science isn’t my best suite. But your description of our universe enveloped within Einstein’s expanding space/time continuum is mind boggling at best. That a singularity the size of nothingness, imbedded in the center of an “infinite nothingness” or incased in the center of an “infinite block of steel”, can expand quadrillions of times in size while confined to conditions where such action should be possible?WOW!, While I know this scenario is older than either of us, it’s still a tough pill to swallow.

    • Orien, I don’t think the expanding model of the universe is any tougher to swallow from a modern standpoint than Christopher Columbus’ belief in sailing ’round’ the world was to contemporaries who were terrified of falling off the edge of it! Then it was Gravity that was the hidden force that explained Earth’s stable sphericity. I suspect we are missing out on truly understanding the nature of Space.

      • It was known that the Earth was round for thousands of years. Also that Columbus seemed to be using an old map to find the “new world”. The problem with understanding space is that so much unproven trash is accepted about it, like endless new space, bending by gravity, it conducts gravity like an electric current through a wire, dark energy, etc.

  120. I should have said, “where such an action should be “Impossible”

  121. Since I know “squat” of black holes, worm holes and singularities, thought I’d dwell on my own ideas Mike. Saying that, I still think the universe is spherical, has a center and will one day recycle into a new expansive world. All I wonder now is, will it look like the one in which we live, or be a mirror image? It’s a part of that antimatter thing I was rambling about.

    • If the universe is cyclic, it will always be made of the same materials, so on a very large scale, it will always be the same. But no planet Earth though even now there must be many similar in a universe that must have probably trillions of trillions of planets.

  122. Mike, 3D only gives a static, ‘freeze-frame’ model. Physical Things change; to model this, you need a fourth dimension, time. Causes produce effects, so time has a forward direction towards the future. All pretty self-evident, surely?

  123. Using the fourth dimension as time is done to humour the mathematicians. Time just is. It is not a dimension but a man made measure of change. We do not need a time travelling Tardis to travel to the Moon. The balloon model uses the fourth dimension as a physical dimension.

  124. Mike, In your reply about the cyclic universe you stated that, if cyclic it would always be made of the same materials. To which I agree. But would that scenario be true had anti-matter escaped with the larger volume of materials those billions of years ago? Or, would there simply not have been a universe?

    • The anti-matter and matter idea at the beginning is just that. We do not know. It has been suggested that there could be anti matter stars and planets and even anti-matter galaxies. Unless they come into contact with large amounts of matter, there is no way of telling if such exist since they go through the same reactions as matter and look the same to our telescopes.

      As it needs lots and lots of energy to make anti matter from matter, I do wonder if there is much anti matter about other than what high energy particles create?

      This “every particle has an anti-particle” idea is just an idea too.

  125. Is our universe encapsulated in an envelope “of sorts” that is expanding and making new space and time as needed? Or, is it an entity unto itself, expanding into an infinite continuum having no restrictions?

    • How big is nothing? No size. It is easy to think of nothing as something that does not exist but nothing has infinite potential as in +trillion and -trillion equals nothing. All the pluses and minuses in the Universe balance out so some say we may have got a Universe from nothing.

      If the Universe is indeed expanding into nothing, it could go on doing so forever though it may have started off the size of a photon.

      There could be other expanding Universes out there and we could expand into them. Unseen, we could be doing so even now.

      New space is the problem. If space is just the distance between two objects, no problem. But if space can affect and conduct gravity, and photons, etc as if it were an actual material, then where does all this extra “material” come from?

      No one has explained how Dark Energy increases the speed of expansion. And why should expansion be limited to light speed? Nothing is moving in that sense we are told. It is the distance between them that is increasing, so why should there be a limitation on speed?

  126. Steve, time is a man made contrivance to justify differential movement in a 3-D world. Without our intervention, this 3-D universe would work just fine for either crawling ants, sloths up a tree or photons at C . Perhaps even better?

  127. Mike, Steve; This is a pretty good vide although I think 90% or better of it is speculation.

  128. The video never actually said anything.

    If new space stopped being created at a set point, that would be the edge of the Universe, and could cause a rebound as the expanding Universe runs into it. And so one day, a new Big Bang.

  129. Revelations!!! After a short time of going through my entire repertoire of knowledge concerning the universe, I find that I’m not stupid or even ignorant of my inability to come up with something earth shattering or new. Heck! Practically every word of what I think has been argued and hashed over for centuries. Think I’ll go into checkers or Mai Jong.

  130. In trying to wrap my mind around the raisin bread and balloon analogies, is there a fixed range of speeds, or speed,
    that un-gravitationally bound galaxies are moving away from each other, or is that an interpolation of a few descent guestamations?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s