Of Particular Significance

The Benefits of 8 TeV Collisions Over 7 TeV.

POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 02/14/2012

Yesterday, a commenter asked me a very good question that I realized I hadn’t yet addressed on this site.  Answering it gives us a chance to look at real data from the Large Hadron Collider [LHC], and to see what differences will arise the machine’s energy is increased from 7 TeV to 8.

The protons that are smashed together at the LHC are made from many quarks, gluons and antiquarks. The proton-proton collisions take place at a definite energy: 7 TeV = 7000 GeV in 2011, 8 TeV = 8000 GeV  in 2012.  But what we’re mainly interested in — what can really create new physical phenomena for us to observe — are the collisions of a quark in one proton with an antiquark in the other proton, or the collision of two gluons, etc. These “mini-collisions” carry only a fraction — typically a very small fraction — of the total proton-proton collision energy. How high a fraction can they carry?  and what are the motivations for increasing the energy from 7 TeV per collision to 8 TeV?  Click here for the answer.

Share via:


Leave a Reply


Buy The Book

A decay of a Higgs boson, as reconstructed by the CMS experiment at the LHC


Although I’ve been slowly revising the Higgs FAQ 2.0, this seemed an appropriate time to bring the Higgs FAQ on this website fully into the

POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 04/15/2024

The particle physics community is mourning the passing of Peter Higgs, the influential theoretical physicist and 2013 Nobel Prize laureate. Higgs actually wrote very few

POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 04/12/2024