A Half Century Since the Birth of QCD

This year marks a half-century since the discovery that a quantum field theory, now known as QCD (quantum chromodynamics), could be the underlying explanation for the strong nuclear force. That’s the force that holds quarks and gluons inside of protons and neutrons, and keeps protons and neutrons clumped together in atomic nuclei. This major step in theoretical physics occurred just a couple of years after it was discovered that a similar quantum field theory for the weak nuclear force (which includes W bosons, a Z boson and a Higgs boson) is mathematically consistent.

With these two breakthroughs came the sudden and unexpected triumph of quantum field theory, emerging as the basic mathematical and conceptual language for understanding the cosmos. It came after two decades in which most experts were convinced that quantum field theory was inconsistent, and only a stepping stone to something deeper.

This week I am in New York City attending two attached scientific meetings, both focused on QCD and other quantum field theories that share its key property, known as “confinement.” One meeting is hosted by New York University, and the other, the Annual Meeting of the Simons Collaboration on Confinement and QCD Strings, by the Simons Foundation. Many luminaries who have spent time on this subject are here together, ranging from David Gross, who co-invented the subject (and was a winner of the 2004 Nobel Prize), to brilliant graduate students who are hoping to reinvent it.

Read more

Physicists Discover String Theory and Extra Dimensions in a Laboratory!

With a headline like that, you probably think this is a parody. But in fact, I’m dead serious. Not only that, the discovery was made in the 1960s.  Due to an accident of history, the physicists involved just didn’t realize it back then.

That said, there are profound problems with this headline.  But the headlines we’ve seen this week, along the lines that “Physicists create a baby wormhole in the laboratory”, are actually WORSE than this one. 

It is more accurate to say that “string theory and extra dimensions were discovered experimentally in the 1960s” than to say that “a baby wormhole was created in a lab in the early 2020s.” 

And now I’m going to show you why. As you’ll see in this post and the next, the two claims are related.

Read more

The Standard Model More Deeply: Lessons on the Strong Nuclear Force from Quark Electric Charges

For readers who want to go a bit deeper into details (though I suggest you read last week’s posts for general readers first [post 1, post 2]):

Last week, using just addition and subtraction of fractions, we saw that the ratio of production rates

  • R = Rate (e+ e ⟶ quark anti-quark) / Rate (e+ e ⟶ muon anti-muon)

(where e stands for “electron” and e+ for “positron”) can be used to verify the electric charges of the quarks of nature. [In this post I’ll usually drop the word “electric” from “electric charge”.] Specifically, the ratio R, at different energies, is both sensitive to and consistent with the Standard Model of particle physics, not only confirming the quarks’ charges but also the fact that they come in three “colors”. (About colors, you can read recent posts here, here and here.)

To keep the previous posts short, I didn’t give evidence that the data agrees only with the Standard Model; I’ll start today by doing that. But I did point out that the data doesn’t quite match the simple prediction. You can see that in the figure below, repeated from last time; it shows the data (black dots) lies close to the predictions (the solid lines) but generally lies a few percent above them. Why is this? The answer: we neglected a small but noticeable effect from the strong nuclear force. Not only does accounting for this effect fix the problem, it allows us to get a rough measure of the strength of the strong nuclear force. From these considerations we can learn several immensely important facts about nature, as we’ll see today and in the next post.

Figure 1: Data (black dots) showing R as a function of the collision energy 2Ee. Horizontal colored lines show the three predictions for R in the regions where the data is simple and 3, 4 or 5 of the quarks are produced. The minor jumpiness in the data is due to measurement imperfections.

Read more

Celebrating the Standard Model: Checking The Electric Charges of Quarks

A post for general readers who’ve heard of quarks; if you haven’t, you might find this article useful:

Yesterday I showed you that the usual argument that determines the electric charges of the various types of quarks uses circular reasoning and has a big loophole in it. (The up quark, for example, has charge 2/3, but the usual argument would actually allow it to have any charge!) But today I’m going to show you how this loophole can easily be closed — and we’ll need only addition, subtraction and fractions to close it.

Throughout this post I’ll shorten “electric charge” to just “charge”.

A Different Way to Check Quark Charges

Our approach will be to study the process in which an electron and a positron (the electron’s anti-particle) collide, disappear (“annihilate”), and are converted into one or another type of quark and the corresponding anti-quark; see Figure 1. The rate for this process to occur, and the rate of a similar one in which a muon and anti-muon are produced, are all we will need to know.

In an electron-positron collision, many things may happen. Among the possibilities, the electron and positron may be converted into two new particles. The new particles may have much more mass (specifically, rest mass) than the electron and positron do, if the collision is energetic enough. This is why physicists can use collisions of particles with small mass to discover unknown particles with large mass.

Figure 1: (Top) an electron and positron, each carrying energy Ee, collide head-on. (Bottom) from the collision with total energy 2Ee , a quark and anti-quark may emerge, as long as Ee is bigger than the quark’s rest mass M times c2.

In particular, for any quark of mass M, it is possible for an electron-positron collision to produce that quark and a corresponding anti-quark as long as the electron’s energy Ee is greater than the quark’s mass-energy Mc2. As Ee is gradually increased from low values, more and more types of quark/anti-quark pairs can be produced.

This turns out to be a particularly interesting observation in the range where 1 GeV < Ee < 10 GeV, i.e. when the total collision energy (2 Ee) is between 2 and 20 GeV. If Ee is any lower, the effects of the strong nuclear force make the production of quarks extremely complicated (as we’ll see in another post). But when the collision energy is above 2 GeV, things start to settle down, and become both simple and interesting.

Read more

Celebrating the Standard Model: The Electric Charges of Quarks

A post for general readers who’ve heard of quarks; if you haven’t, try reading here:

The universe has six types of quarks, some of which are found in protons and neutrons, and thus throughout all ordinary material. For no good reasons, we call them up, down, strange, charm, bottom and top. Today and tomorrow I want to show you how we know their electric charges, even though we can’t measure them directly. The only math we’ll need is addition, subtraction, and fractions.

This also intersects with my most recent post in this series on the Standard Model, which explained how we know that each type of quark comes in three “colors”, or versions — each one a type of strong nuclear charge akin to electric charge.

Today we’ll review the usual lore that you can find in any book or on any website, but we’ll see that there’s a big loophole in the lore that we need to close. Tomorrow we’ll use a clever method to close that loophole and verify the lore is really true.

The Lore for Protons and Neutrons

Physicists usually define electric charge so that

  • the proton has electric charge +1
  • the electron has charge -1,
  • the neutron has charge 0 (i.e. electrically neutral, hence its name).

[Throughout the remainder of this post, I’ll abbreviate “electric charge” as simply “charge“.]

As for the six types of quarks, the lore is that their charges are [using notation that “Qu” means “electric charge of the u quark“]:

  • Up, Charm, Top (u,c,t): Qu = Qc = Qt = 2/3
  • Down, Strange, Bottom (d,s,b): Qd = Qs = Qb = -1/3

But how do we know this?

Read more

The Standard Model More Deeply: Gluons and the Math of Quark “Color”

For readers who want to dig deeper; this is the second post of two, so you should read the previous one if you haven’t already. (Readers who would rather avoid the math may prefer this post.)

In a recent post I described, for the general reader and without using anything more than elementary fractions, how we know that each type of quark comes in three “colors” — a name which refers not to something that you can see by eye, but rather to the three “versions” of strong nuclear charge. In the post previous to today’s, I went into more detail about how the math of “color” works; you’ll need to read that post first, and since I will sometimes refer to its figures, you may want to keep in handy in another tab.

Read more

Celebrating the Standard Model: How We Know Quarks Come in Three “Colors”

A post for general readers:

Within the Standard Model, the quarks (and anti-quarks) are my favorite particles, because they are so interesting and so diverse. Physicists often say, in their whimsical jargon, that quarks come in various “flavors” and “colors”.   But don’t take these words seriously! They’re just labels; neither has anything to do with taste or vision. We might just as well have said the quarks come in “gerflacks” and “sharjees”; or better, we might have said “types” and “versions”. 

Today I’ll show you how one can easily see that each of the six flavors of quark comes in three colors (i.e., each gerflack/type of quark comes in three sharjees/versions.)  All we’ll need to do is examine a simple property of the W boson, one of the other particles in the Standard Model.

[Another way to say this is that the Standard Model is often described as having a kind of symmetry named “SU(3)xSU(2)xU(1)”; today we’ll put the “3” in SU(3). ]

Gerflacks and Sharjees of Quarks

We know there are six types/gerflacks/flavors of quarks because each type of quark has its own unique mass and lifetime, a fact that’s relatively easy to confirm experimentally.  Quarks 1 and 2 are called down and up, quarks 3 and 4 are called strange and charm, and quarks 5 and 6 are called bottom and top; again, the whimsical names don’t have any meaning, and we often just label them d, u, s, c, b, t.

But to understand why each type of quark comes in three versions/sharjees/colors is more subtle, because two quarks of the same “flavor” which differ only by their “color” appear the same in experiments (despite our intuition for what the word “color” usually means.)

What, in fact, is a “color”? Each color/sharjee/version is a kind of strong nuclear charge, analogous to electric charge, which we encounter in daily life through static electricity and other phenomena. Electric charge determines which objects attract and repel each other via electrical forces. Electrons have electric charge, and so do quarks; that’s why electrical forces affect them. But quarks, unlike electrons, have strong nuclear charge too, and those charges determine how quarks attract or repel one another via the the strong nuclear force.  

And here’s the interesting point: whereas there is only one version of electric charge (electrons and protons and atomic nuclei have different amounts of it, but it is different amounts of the same thing), there are three different versions/sharjees/colors of strong nuclear charge.  They are often called “red”, “green” and “blue”, or “redness”, “greeness” and “blueness”. (Remember, these are just names for sharjees — for versions of strong nuclear charge. In no sense do they represent actual colors that your eyes would see, any more than the six types/flavors of quarks would taste differently.)

Read more

Celebrating the Standard Model: Atoms, Quarks and the Strong Nuclear Force

For the general reader:

Last week I showed you, without any technicalities, how to recognize the elementary forces of nature in the pattern of particle masses and lifetimes. This week we’ll start seeing what we can extract just from the particles’ masses alone… and what we cannot. Today we’ll focus on quarks and the strong nuclear force.

A key factor in nature, which plays an enormous role in everyday life, is the mass of a typical atom. [Note: on this website, “mass” always means “rest mass”, which does not increase with a particle’s speed.] This in turn arises mainly from the masses of protons and neutrons, which are about equal, and tiny: about 0.00000000000000000000000000167 kg (or 0.00000000000000000000000000368 pounds). Since those numbers are crazy-small, physicists use a different measure; we say the mass is about 1 GeV/c2, and more precisely, 0.938 GeV/c2. In any case, it’s tiny on human scales, but it’s some definite quantity, the same for every proton in nature. Where does this mass come from; what natural processes determine it?

You may have heard the simplistic remark that “a proton is made of three quarks” (two up quarks and a down quark), which would suggest these quarks have mass of about 1/3 of a proton, or about 0.313 GeV/c2. But something’s clearly amiss. If you look at websites and other sources about particle physics, they all agree that up and down quark masses are less than 0.01 GeV/c2; these days they usually say the up quark has mass of 0.002 GeV/c2 and the down quark has 0.005 GeV/c2. So if the proton were simply made of three quarks, it would naively have a mass of less than 1% of its actual mass.

What’s going on? A first little clue is that different sources sometimes quote different numbers for the quark masses. There are six types of quarks; from smallest mass to largest, they are up, down, strange (u,d,s, the three light quarks), charm, bottom (c,b, the two somewhat heavy quarks) and top (t, the super-heavy quark.) [Their names, by the way, are historical accidents and don’t mean anything.] But some websites say the up quark mass is 0.003 instead of 0.002 GeV/c2, a 50% discrepancy; the bottom quark’s mass is variously listed as 4.1 GeV/c2, 4.5 GeV/c2, and so forth. This is in contrast to, say, the electron’s mass; you’ll never see websites that disagree about that.

The origin of all these discrepancies is that quarks (and anti-quarks and gluons) are affected by the strong nuclear force, unlike electrons, Higgs bosons, and all the other known elementary particles. The strong forces that quarks undergo make everything about them less clear and certain. Among numerous manifestations, the most dramatic is that quarks (and anti-quarks and gluons) are never observed in isolation. Instead they’re always found in special combinations, called “hadrons“. A proton is an example, but there are many more. And the strong nuclear force can have a big effect on their masses.

The Modern Proton and the Masses of Quarks

A proton, in fact, is not simply made from three quarks, the way a hydrogen atom is simply made from a proton and an electron. As I described in this article, it’s vastly more complex; it’s made from three quarks plus lots of gluons plus lots of pairs of other quarks and anti-quarks. So the simple intuition we get from atoms does not apply to hadrons like the proton.

Read more

%d bloggers like this: