Of Particular Significance

The Benefits of 8 TeV Collisions Over 7 TeV.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 02/14/2012

Yesterday, a commenter asked me a very good question that I realized I hadn’t yet addressed on this site.  Answering it gives us a chance to look at real data from the Large Hadron Collider [LHC], and to see what differences will arise the machine’s energy is increased from 7 TeV to 8.

The protons that are smashed together at the LHC are made from many quarks, gluons and antiquarks. The proton-proton collisions take place at a definite energy: 7 TeV = 7000 GeV in 2011, 8 TeV = 8000 GeV  in 2012.  But what we’re mainly interested in — what can really create new physical phenomena for us to observe — are the collisions of a quark in one proton with an antiquark in the other proton, or the collision of two gluons, etc. These “mini-collisions” carry only a fraction — typically a very small fraction — of the total proton-proton collision energy. How high a fraction can they carry?  and what are the motivations for increasing the energy from 7 TeV per collision to 8 TeV?  Click here for the answer.

Share via:

Twitter
Facebook
LinkedIn
Reddit

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.

Related

When it comes to the weak nuclear force and why it is weak, there’s a strange story which floats around. It starts with a true

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 01/10/2025

In a previous post, I showed you that the Standard Model, armed with its special angle θw of approximately 30 degrees, does a pretty good

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 12/19/2024