Here’s a tip. If you read an argument either for or against a successor to the Large Hadron Collider (LHC) in which the words “string theory” or “string theorists” form a central part of the argument, then you can conclude that the author (a) doesn’t understand the science of particle physics, and (b) has an absurd caricature in mind concerning the community of high energy physicists. String theory and string theorists have nothing to do with whether such a collider should or should not be built.
Such an article has appeared on Big Think. It’s written by a certain Thomas Hartsfield. My impression, from his writing and from what I can find online, is that most of what he knows about particle physics comes from reading people like Ethan Siegel and Sabine Hossenfelder. I think Dr. Hartsfield would have done better to leave the argument to them.
An Army Made of Straw
Dr. Hartsfield’s article sets up one straw person after another.
- The “100 billion” cost is just the first. (No one is going to propose, much less build, a machine that costs 100 billion in today’s dollars.)
- It refers to “string theorists” as though they form the core of high-energy theoretical physics; you’d think that everyone who does theoretical particle physics is a slavish, mindless believer in the string theory god and its demigod assistant, supersymmetry. (Many theoretical particle physicists don’t work on either one, and very few ever do string theory. Among those who do some supersymmetry research, it’s often just one in a wide variety of topics that they study. Supersymmetry zealots do exist, but they aren’t as central to the field as some would like you to believe.)
- It makes loud but tired claims, such as “A giant particle collider cannot truly test supersymmetry, which can evolve to fit nearly anything.” (Is this supposed to be shocking? It’s obvious to any expert. The same is true of dark matter, the origin of neutrino masses, and a whole host of other topics. Its not unusual for an idea to come with a parameter which can be made extremely small. Such an idea can be discovered, or made obsolete by other discoveries, but excluding it may take centuries. In fact this is pretty typical; so deal with it!)
- “$100 billion could fund (quite literally) 100,000 smaller physics experiments.” (Aside from the fact that this plays sleight-of-hand, mixing future dollars with present dollars, the argument is crude. When the Superconducting Supercollider was cancelled, did the money that was saved flow into thousands of physics experiments, or other scientific experiments? No. Congress sent it all over the place.)
- And then it concludes with my favorite, a true laugher: “The only good argument for the [machine] might be employment for smart people. And for string theorists.” (Honestly, employment for string theorists!?! What bu… rubbish. It might have been a good idea to do some research into how funding actually works in the field, before saying something so patently silly.)
Meanwhile, the article never once mentions the particle physics experimentalists and accelerator physicists. Remember them? The ones who actually build and run these machines, and actually discover things? The ones without whom the whole enterprise is all just math?
Although they mostly don’t appear in the article, there are strong arguments both for and against building such a machine; see below. Keep in mind, though, that any decision is still years off, and we may have quite a different perspective by the time we get to that point, depending on whether discoveries are made at the LHC or at other experimental facilities. No one actually needs to be making this decision at the moment, so I’m not sure why Dr. Hartsfield feels it’s so crucial to take an indefensible position now.
(more…)