Of Particular Significance

Cutting edge particle physics today:

I’ve been spending the week at an inspiring and thought-provoking scientific workshop. (Well, “at” means “via Zoom”, which has been fun since I’m in the US and the workshop is in Zurich; I’ve been up every morning this week before the birds.) The workshop brings together a terrific array of particle theorists and Large Hadron Collider [LHC] experimenters from the ATLAS and CMS experiments, and is aimed at “Semi-Visible Jets”, a phenomenon that could reveal so-far-undiscovered types of particles in a context where they could easily be hiding. [Earlier this week I described why its so easy for new particles to hide from us; the Higgs boson itself hid for almost 25 years.]

After a great set of kick-off talks, including a brand new result on the subject from ATLAS (here’s an earlier one from CMS) we moved into the presentation and discussion stage, and I’ve been learning a lot. The challenges of the subject are truly daunting, not only because the range of possible semi-visible jets is huge, but also because the scientific expertise that has to be gathered in order to design searches for semi-visible jets is exceptionally wide, and often lies at or beyond the cutting edge of research.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON July 7, 2022

A post for general readers:

This is the first of several posts celebrating the hugely successful Standard Model of particle physics, the concepts and equations that describe the basic bricks and mortar of the universe. In these posts, I’ll explain (without assuming readers have a science background) how we know some of its most striking features. We’ll look at simple facts that particle physicists have learned over the decades, and use them to infer basic features of the universe and to recognize deep questions that still trouble the experts.

The Elementary “Forces” of Physics: A Classification of Nature

Perhaps you’ve heard it said that “There are four fundamental forces in nature.” Whether you have or not, today I’ll show you how to verify this yourself. (Actually, there are five forces, though we’ll only see a hint of the fifth today.) The force everybody knows from daily life is gravity; ironically, this force has no measurable impact on particle physics, so it’s the only one we won’t be looking at in this post.

I’d better emphasize, though, that the word “force” is slippery. Normally, in everyday life, a force means something that will push or pull objects around. But when physicists say “force,” they often mean something much more general. Because of that they sometimes use the word “interaction” instead of “force”.

For example, static electricity that holds socks together when they come out of the dryer is an example of an honest electromagnetic force — the socks really are pulled together. So is the force that pulls a magnet to a refrigerator door. But when a light bulb glows, that doesn’t involve a force in the limited sense of a push or pull. Yet it still involves the “electromagnetic interaction”, i.e. the “electromagnetic force” in a generalized sense. That’s because, although it is far from obvious, the emission (or absorption) of light involves the same basic phenomena that govern the force between the socks.

[Physicists use “electromagnetic” rather than “electric” or “magnetic” separately because these two forces are so deeply intertwined that it is often impossible to distinguish them.]

So when physicists say there are “four forces” (or five), they are imposing a classification scheme on the world around us. They mean:

  • All fundamental physical processes in nature can be divided up into five classes.
  • Each class involves one of the following types of interactions:
    1. gravitational (holds the planet together and holds us to the ground),
    2. electromagnetic (creates light, controls chemistry and biology, and dominates daily life),
    3. weak-nuclear (essential in stars and in supernova explosions),
    4. strong-nuclear (forms protons, neutrons, and their agglomerations in atomic nuclei),
    5. Higgs-related (associated with the masses of all known elementary particles).

There are currently no verified exceptions to this classification scheme. And by examining basic facts about the various particles found in nature, we can see these classes (other than gravity) in operation.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON July 6, 2022

Ten years ago today, the discovery of the type of particle known as the “Higgs Boson” was announced. [What is this particle and why was its discovery important? Here’s the most recent Higgs FAQ, slightly updated, and a literary article aimed at all audiences high-school and up, which has been widely read.]

But the particle was first produced by human beings in 1988 or 1989, as long as 34 years ago! Why did it take physicists until 2012 to discover that it exists? That’s a big question with big implications.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON July 4, 2022

Atoms are all about a tenth of a billionth of a meter wide (give or take a factor of 2). What determines an atom’s size? This was on the minds of scientists at the turn of the 20th century. The particle called the “electron” had been discovered, but the rest of an atom was a mystery. Today we’ll look at how scientists realized that quantum physics, an idea which was still very new, plays a central role. (They did this using one of their favorite strategies: “dimensional analysis”, which I described in a recent post.)

Since atoms are electrically neutral, the small and negatively charged electrons in an atom had to be accompanied by something with the same amount of positive charge — what we now call “the nucleus”. Among many imagined visions for what atoms might be like was the 1904 model of J.J. Thompson, in which he imagined the electrons are embedded within a positively-charged sphere the size of the whole atom.

But Thompson’s former student Ernest Rutherford gradually disproved this model in 1909-1911, through experiments that showed the nucleus is tens of thousands of times smaller (in radius) than an atom, despite having most of the atom’s mass.

Once you know that electrons and atomic nuclei are both tiny, there’s an obvious question: why is an atom so much larger than either one? Here’s the logical problem”

  • Negatively charged particles attract positively charged ones. If the nucleus is smaller than the atom, why don’t the electrons find themselves pulled inward, thus shrinking the atom down to the size of that nucleus?
  • Well, the Sun and planets are tiny compared to the solar system as a whole, and gravity is an attractive force. Why aren’t the planets pulled into the Sun? It’s because they’re moving, in orbit. So perhaps the electrons are in orbit around the nucleus, much as planets orbit a star?
  • This analogy doesn’t work. Unlike planets, electrons orbiting a nucleus would be expected to emit ample electromagnetic waves (i.e. light, both visible and invisible), and thereby lose so much energy that they’d spiral into the nucleus in a fraction of a second.

(These statements about the radiated waves from planets and electrons can be understood with very little work, using — you guessed it — dimensional analysis! Maybe I’ll show you that in the comments if I have time.)

So there’s a fundamental problem here.

  • The tiny nucleus, with most of the atom’s mass, must be sitting in the middle of the atom.
  • If the tiny electrons aren’t moving around, they’ll just fall straight into the nucleus.
  • If they are moving around, they’ll radiate light and quickly spiral into the nucleus.

Either way, this would lead us to expect

  • Rnucleus = # Ratom

where # is not too, too far from 1. (This is the most naive of all dimensional analysis arguments: two radii in the same physical system shouldn’t be that different.) This is in contradiction to experiment, which tells us that # is about 1/100,000! So it seems dimensional analysis has failed.

Or is it we who have failed? Are we missing something, which, once included, will restore our confidence in dimensional analysis?

We are missing quantum physics, and in particular Planck’s constant h. When we include h into our dimensional analysis, a new possible size appears in our equations, and this sets the size of an atom. Details below.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON June 30, 2022

In last week’s posts we looked at basic astronomy and Einstein’s famous E=mc2 through the lens of the secret weapon of theoretical physicists, “dimensional analysis”, which imposes a simple consistency check on any known or proposed physics equation.  For instance, E=mc2 (with E being some kind of energy, m some kind of mass, and c the cosmic speed limit [also the speed of light]) passes this consistency condition.

But what about E=mc or E=mc4 or E=m2c3 ? These equations are obviously impossible! Energy has dimensions of mass * length2 / time2. If an equation sets energy equal to something, that something has to have the same dimensions as energy. That rules out m2c3, which has dimensions of mass2 * length3 / time3. In fact it rules out anything other than E = # mc2 (where # represents an ordinary number, which is not necessarily 1). All other relations fail to be consistent.

That’s why physicists were thinking about equations like E = # mc2 even before Einstein was born. 

The same kind of reasoning can teach us (as it did Einstein) about his theory of gravity, “general relativity”, and one of its children, black holes.  But again, Einstein’s era wasn’t first to ask the question.   It goes back to the late 18th century. And why not? It’s just a matter of dimensional analysis.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON June 28, 2022

In my last post I introduced you to dimensional analysis, an essential trick for theoretical physicists, and showed you how you could address and sometimes solve interesting and important problems with it while hardly doing any work. Today we’ll look at it differently, to see its historical role in Einstein’s relativity.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON June 23, 2022

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.