Of Particular Significance

By now the word is widely out that Tuesday’s fusion announcement was less of a news flash (as I initially suggested) and more of a overheated news flicker. The politician-scientists who made the announcement that they’d put 2 Megajoules of energy into a pellet of nuclear kindling, and gotten 3 Megajoules out from nuclear fusion, neglected to mention that it took them about 300 Megajoules — about 100 times as much energy from the electrical grid — to run the experiment in the first place. In other words, they said

  • -2 + 3 = +1 !!! Breakthrough!!!!!!!!!

whereas anyone who knew the details would have said

  • -300 – 2 + 3 = -299 ? Cool bro, but…

In other words, it was a good day for fusion, but not nearly good enough.

To be fair to everyone, the scientists involved have made tremendous progress in the last few years; they weren’t even close to getting this much energy out until 2021. They’re 10 times ahead of where they were in 2019 and over 100 times ahead of where they were in 2010. If they can continue this progress and figure out how to get another 100 times as much fusion energy out without requiring vastly more electricity, then this all might start to be somewhat interesting.

But even then, it seems it’s going to be very tough to get anything resembling a power plant out of this fusion strategy. Experts seem to think the engineering challenges are immense. (Have any readers heard someone say otherwise?) Perhaps Tokomaks are still the way to go.

I’m annoyed, as I’m sure many of you are. I was myself too trusting, assuming that the politician-scientists who made the claims would be smart enough not to over-hype something that would get so much scrutiny. It’s the 21st century; you can’t come out and say something so undeservedly dramatic without the backlash being loud and swift. Instead they played the political spin game as though it was still the 1970s. I think they were hoping to convince Congress to keep their funding going (and because of an application of their work to nuclear weapons, they may succeed.) But when it comes to nuclear fusion as a solution to our energy/climate crisis — did they really think people wouldn’t quickly figure out they’d been duped? Seriously?

To quote one of the comments on my last post, from Blackstone, “It seems to me that this whole civilization desperately needs a reality check.” I completely agree. We’re so driven now by hype and click-bait that it’s almost impossible to separate the wheat from the chaff. Maybe at some point the people driving this international daily drama show will realize they’re doing serious harm. Clearly we’re not there yet.

But that’s what this blog is for, as are some others in a similar vein. Hopefully I won’t make too many mistakes like the one I made Tuesday, and when I make them, I’ll always fix them. Thank you to the many commenters who raised valid concerns; I know you’ll always keep me honest if I take a false step.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 15, 2022

The fusing of small atomic nuclei into larger ones, with the associated release of particles carrying a lot of motion-energy, is the mechanism that powers the Sun’s furnace, and that of other stars. This was first suspected in the 1920’s, and confirmed in the 1930s.

Nuclear fission (the breaking of larger atomic nuclei into smaller pieces) was discovered in the 1930s, and used to generate energy in 1942. Work on fission in settings both uncontrolled (i.e. bombs) and controlled (ie. power plants) proceeded rapidly; bombs unfortunately were quickly designed and built during World War II, while useful power plants were already operating by 1951. Meanwhile work on fusion also proceeded rapidly; in the uncontrolled setting, the first bomb using fusion (triggered by a fission bomb!) was already made in 1951, and in a flash of a decade, huge numbers of hydrogen bombs filled the arsenals of superpowers large and small. But controlled fusion for power plants… Ah.

Had it been as easy to control fusion as it was to control fission, we’d have fusion plants everywhere; fossil fuels would be consigned only to certain forms of transportation, and the climate crisis would be far less serious than it is right now. But unfortunately, it has been 70 years of mostly bad news — tragic news, really, for the planet.

But finally we have a little glimmer of hope. On December 5th, somebody finally managed, without using a bomb, to get more fusion-generated energy out of an object than the energy they had to put into it.

[UPDATE: Not really. Though this was a success and a milestone, it wasn’t nearly as good as advertised. Yes, more energy came out of the fusing material than was put into the fusing material. But it took far more energy to make the necessary laser light in the first place — 300 megajoules of energy off the electricity grid, compared to a gain from the fusing material of about 1 megajoule. So overall it was still a big net loss, even though locally, at the fusing material, it was a net gain. See this link, in particular the third figure, which shows that the largest energy cost was electricity from the grid to run the lasers. In short, well, it’s still a good day for fusion, but we are even further from power plants than we were led to believe today.]

Poster Child for Particle Physics

In the Sun and similar stars, fusion proceeds through several processes in which protons (the nuclei of the simplest form of hydrogen) are converted to neutrons and combine with other protons to form mainly helium nuclei (two protons and two neutrons). Other important nuclei are deuterium D (a version of hydrogen with a proton and neutron stuck together), tritium T (another version with a proton plus two neutrons — which is unstable, typically lasting about 12 years), and Helium-3 (two protons plus one neutron.)

Fusion is a fascinating process, because all four of the famous forces of nature are needed. [The fifth, the Higgs force, plays no role, though as is so often the case, the Higgs field is secretly crucial.] In a sense, it’s a poster child for our understanding of how the cosmos works. Consider sunshine:

  1. We need gravity to hold the Sun together, and to crush its center to the point that its temperature reaches well over ten million degrees.
  2. We need electromagnetism to produce the light that carries energy to the Sun’s surface and sunshine to Earth.
  3. We need the strong nuclear force to make protons and neutrons, and to combine them into other simple nuclei such as deuterium, tritium and helium.
  4. We need the weak nuclear force to convert the abundant protons into neutrons (along with a positron [i.e. an anti-electron] and a neutrino.)

How can we be sure this really happens inside the Sun? There are quite a few ways, but perhaps the most direct is that we observe the neutrinos, which (unlike everything else that’s made in the process) escape from the Sun’s core in vast numbers. Though very difficult to detect on Earth, they are occasionally observed. By now, studies of these neutrinos, as here by the Borexino experiment, are definitive. Everything checks out.

In the recent experiment on Earth, gravity’s role is a little more indirect — obviously we wouldn’t have a planet on which to live and laboratories in which to do experiments without it. But it’s electromagnetism which does the holding and crushing of the material. The role of the strong and weak nuclear forces is similar, though instead of starting with mostly protons, the method that made fusion this week uses the weak nuclear force long before the experiment to make the neutrons needed in deuterium and tritium. The actual moment of fusion involves the strong nuclear force, in which

  • D + T –> He + n

i.e. one deuterium nucleus plus one tritium nucleus (a total of two protons and three neutrons) are recombined to make one helium nucleus and one neutron, which come out with more motion-energy than the initial D and T nuclei start with.

The Promise of Endless Cheap Safe[r] Power?

The breakthrough this week? Finally, after decades of promises and disappointments, workers at a US lab, Lawrence Livermore Laboratory in California, working at the National Ignition Facility, have gotten significantly more energy out of fusion than they put in. How this works is described by the lab here. The steps are: make a pellet stocked with D and T; fire up a set of lasers and amplify them to enormous power; aim them into a chamber containing the pellet, heating the chamber to millions of degrees and causing it to emit X-rays (high-energy photons); the blast of X-rays blows off the outer layer of the pellet, which [action-reaction!] causes the inner core of the pellet to greatly compress; in the high temperature and density of the pellet’s core, fusion spontaneously begins and heats the rest of the pellet, causing even more fusion.

Not as easy as it sounds. For a long time they’ve been getting a dud, or just a little fusion. But finally, the energy from fusion has exceeded the energy of the initial lasers by a substantial amount — 50%.

This one momentary success is far from a power plant. But you can’t make a power plant without first making power. So December 5th, eighty years and three days after fission’s first good day, was a good day for fusion on Earth, maybe the first one ever.

If this strategy for making fusion will ever lead to a power plant, this process will have to repeated over and over very rapidly, with the high-energy particles that are created along the way being directed somewhere where they can heat water and turn a steam turbine, from which electric current can be created as it is in many power plants. Leaving aside the major technical challenges, one should understand that this does not come without radioactive pollution; the walls of the container vessel in which the nuclear reactions take place, and other materials inside, will become radioactive over time, and will have to be disposed of with care, as with any radioactive waste. But it’s still vastly safer than a fission power plant, such as are widespread today. Why?

First, the waste from a fission plant is suitable for making nuclear weapons; it has to be not only buried safely but also guarded. Waste from a fusion plant, though still radioactive, is not useful for that purpose.

Second, if a fission plant malfunctions, its nuclear chain-reaction can start running away, getting hotter and hotter until the fuel melts, breaks through the vessel that contains it, and contaminates ground, air and water. By contrast, if a fusion plant malfunctions, its nuclear reactions just… stop.

And third, mining for uranium is bad for the environment (and uranium itself can be turned into a fuel for nuclear weapons.) Mining for hydrogen involves taking some water and passing electric current through it. Admittedly it’s a bit more complicated than that to get the deuterium and especially the tritium you need — the tritium be obtained from lithium, which does require mining — but still, less digging giant holes into mountains and contaminating groundwater with heavy metals.

Meanwhile, both forms of nuclear power have the advantage that they don’t dump loads of carbon into the atmosphere, and avoid the kind of oil spills we saw this week in Kansas.

So even though we are a long way from having nuclear fusion as a power source, and even though there will be some nuclear waste to deal with, there are good reasons to note this day. Someday we might look back on it as the beginning of a transformed economy, a cleaner atmosphere, and a saved planet.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 13, 2022

A wormhole! What an amazing concept — a secret tunnel that connects two different regions of space! Could real ones exist? Could we — or our dogs — travel through them, and visit other galaxies billions of light years away, and come back to tell everyone all about it?

I bring up dogs because of a comment, quoted in the Guardian and elsewhere, by my friend and colleague, experimentalist Maria Spiropulu. Spiropulu is a senior author on the wormhole-related paper that has gotten so much attention in the past week, and she was explaining what it was all about.

  • “People come to me and they ask me, ‘Can you put your dog in the wormhole?’ So, no,” Spiropulu told reporters during a video briefing. “… That’s a huge leap.”

For this, I can’t resist teasing Spiropulu a little. She’s done many years of important work at the Large Hadron Collider and previously at the Tevatron, before taking on quantum computing and the simulation of wormholes. But, oh my! The idea that this kind of research could ever lead to a wormhole that a dog could traverse… that’s more than a huge leap of imagination. It’s a huge leap straight out of reality!

I’ve been trying to train our dog, Phoebe, to fetch a ball through a wormhole. She seems eager but nervous.

What’s the problem?

Decades ago there was a famous comedian by the name of Henny Youngman. He told the following joke — which, being no comedian myself, I will paraphrase.

  • I know a guy who wanted to set a mousetrap but had no cheese in his fridge. So he cut a picture of a piece of cheese from a magazine, and used that instead. Just before bed, he heard the trap snap shut, so he went to look. In the trap was a picture of a mouse.

Well, with that in mind, consider this:

  • Imaginary cheese can’t catch a real mouse, and an imaginary wormhole can’t transport a real dog!
(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 9, 2022

A break from all these wormholes and strings; let’s take a moment to look at the sky. In the US, sadly, most of the country will be under cloud, but for those who aren’t, you have a spectacle tonight, at around 10-11pm Eastern Time in the US, roughly 5-6 am UT in Northern Europe.

It’s not terribly unusual for the Moon to pass in front of a planet and block it, from the point of view of some of us on Earth. This time it is Mars’ turn. You’ll be able to see the Moon eclipsing Mars (a “lunar occultation” of Mars), weather permitting, in the region shown below. This map is taken from in-the-sky.org, where you can enter your location and find out exactly when you’ll see Mars disappear behind the Moon and then reappear.

Visibility of tonight’s occultation of Mars by the Moon. See in-the-sky.org for more details.

This should be fun even with the naked eye — Mars won’t disappear in an instant but will do so gradually — but it will be better with binoculars, and great in a small telescope. It will give you a chance to see that yes, the Moon is in slow, steady motion in the sky relative to the planets, which (being further) seem to move more slowly. Lunar and solar eclipses provide a similar opportunity to observe this motion, but I think occultations provide the clearest sense of it.

The Full Moon can be seen from south to north across the Earth. Why isn’t the occultation visible everywhere? It is because the Moon is smaller than the Earth, as I explained here as part of my series on “Do It Yourself Astronomy”. In a sense, the light of Mars effectively (though not literally) casts the Moon’s shadow onto the Earth, and the shadow’s width — the width of the region over which the occultation is visible — would be the same as the diameter of the Moon, were the occultation visible close to the Earth’s equator. (As I pointed out, you can use this fact to measure the Moon’s size without ever leaving the Earth.) Because tonight’s occultation is visible closer to the poles, the region of visibility on the Earth’s surface is distorted by the Earth’s curvature, making it larger than the Moon by about 50% — about 3000 miles (5000 km) or so. (That’s yet more evidence that the Earth’s not flat, in case you needed some.)

Finally, there’s something quite remarkable about this occultation. It occurs close to two special moments:

  1. almost at full Moon (within a few hours);
  2. almost at “Mars opposition” (within a few hours) — when Mars is (nearly) closest, brightest and highest in the midnight sky, as brilliant as it gets over its cycle.

Since (1) happens once a month, and (2) happens once every two years, and occultations don’t occur all the time, this seems like quite a coincidence!

Only… it’s not as big a coincidence as it looks. A puzzler for you: why isn’t it a coincidence that (1) and (2) happen at the same time? That is, if there’s an lunar occultation of Mars at full Moon, why must Mars be nearly at opposition? [Hint: it’s just geometry.]

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 7, 2022

This post is a continuation of the previous one, which you should read first…

Now, what exactly are these wormholes that certain physicists claim to be trying to make or, at least, simulate? In this post I’ll explain what the scientists did to bring the problem within reach of our still-crude quantum computers. [I am indebted to Juan Maldacena, Daniel Jafferis and Brian Swingle for conversations that improved my understanding.]

An important point from last post: a field theory with quarks and gluons, such as we find in the real world or such as we might find in all sorts of imaginary worlds, is related by the Maldacena conjecture to strings (including quantum gravity) moving around in more dimensions than the three we’re used to. One of these dimensions, the “radial dimension”, is particularly important. As in the previous post, it will play a central role here.

Einstein-Rosen Bridge (ER) vs. Einstein-Podolsky-Rosen Entanglement (EPR)

It’s too bad that Einstein didn’t live long enough to learn that two of his famous but apparently unrelated papers actually describe the same thing, at least in the context of Maldacena’s conjecture. As Maldacena and Lenny Susskind explored in this paper, the Maldacena conjecture suggests that ER is the same as EPR, at least in some situations.

We begin with two identical black holes in the context of a string theory on the same curved space that appears in the Maldacena conjecture. These two black holes can be joined at the hip — well, at the horizon, really — in such a way as to form a bridge. It is not really a bridge in spacetime in the way you might imagine a wormhole to be, in the sense that you can’t cross the bridge; even if you move at the speed of light, the bridge will collapse before you get to the other side. Such is the simplest Einstein-Rosen bridge — a non-traversable wormhole.

What, according to the Maldacena conjecture, is this bridge from the point of view of an equivalent field theory setting? The answer is almost fixed by the symmetries of the problem. Take two identical field theories that would each, separately, be identical to one of the two black holes in the corresponding string theory. These two theories do not affect each other in any way; their particles move around in separate universes, never interacting. Despite this, we can link them together, forming a metaphorical bridge, in the most quantum sense you can imagine — we entangle them as much as we can. What does this mean?

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 6, 2022

With a headline like that, you probably think this is a parody. But in fact, I’m dead serious. Not only that, the discovery was made in the 1960s.  Due to an accident of history, the physicists involved just didn’t realize it back then.

That said, there are profound problems with this headline.  But the headlines we’ve seen this week, along the lines that “Physicists create a baby wormhole in the laboratory”, are actually WORSE than this one. 

It is more accurate to say that “string theory and extra dimensions were discovered experimentally in the 1960s” than to say that “a baby wormhole was created in a lab in the early 2020s.” 

And now I’m going to show you why. As you’ll see in this post and the next, the two claims are related.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 5, 2022

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.