Of Particular Significance

Off to Illinois’s National Labs For a Week of Presentations

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 11/11/2013

I have two very different presentations to give this week, on two very similar topics. First I’m going to the LHC Physics Center [LPC], located at the Fermilab National Accelerator Laboratory, host of the now-defunct Tevatron accelerator, the predecessor to the Large Hadron Collider [LHC]. The LPC is the local hub for the United States wing of the CMS experiment, one of the two general-purpose experiments at the LHC. [CMS, along with ATLAS, is where the Higgs particle was discovered.] The meeting I’m attending is about supersymmetry, although that’s just its title, really; many of the talks will have implications that go well beyond that specific subject, exploring more generally what we have and still could search for in the LHC’s existing and future data.  I’ll be giving a talk for experts on what we do and don’t know currently about one class of supersymmetry variants, and what we should be perhaps be trying to do next to cover cases that aren’t yet well-explored.

Second, I’ll be going to Argonne National Laboratory, to give a talk for the scientists there, most of whom are not particle physicists, about what we have learned so far about nature from the LHC’s current data, and what the big puzzles and challenges are for the future.  So that will be a talk for non-expert scientists, which requires a completely different approach.

Both presentations are more-or-less new and will require quite a bit of work on my part, so don’t be surprised if posts and replies to comments are a little short on details this week…

Share via:

Twitter
Facebook
LinkedIn
Reddit

4 Responses

    1. To your first question: maybe.
      To your second question: absolutely not. The energy scale is completely wrong for any link to new phenomena that we’re unfamiliar with. It’s a matter of better-understanding the equations we already know, specifically those of the strong nuclear force.

Leave a Reply

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.

Related

Every now and then, I get a question from a reader that I suspect many other readers share. When possible, I try to reply to

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 07/25/2024

The mass of a single proton, often said to be made of three quarks, is almost 1 GeV/c2. To be more precise, a proton’s mass

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 07/22/2024