Of Particular Significance

The Benefits of 8 TeV Collisions Over 7 TeV.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 02/14/2012

Yesterday, a commenter asked me a very good question that I realized I hadn’t yet addressed on this site.  Answering it gives us a chance to look at real data from the Large Hadron Collider [LHC], and to see what differences will arise the machine’s energy is increased from 7 TeV to 8.

The protons that are smashed together at the LHC are made from many quarks, gluons and antiquarks. The proton-proton collisions take place at a definite energy: 7 TeV = 7000 GeV in 2011, 8 TeV = 8000 GeV  in 2012.  But what we’re mainly interested in — what can really create new physical phenomena for us to observe — are the collisions of a quark in one proton with an antiquark in the other proton, or the collision of two gluons, etc. These “mini-collisions” carry only a fraction — typically a very small fraction — of the total proton-proton collision energy. How high a fraction can they carry?  and what are the motivations for increasing the energy from 7 TeV per collision to 8 TeV?  Click here for the answer.

Share via:

Twitter
Facebook
LinkedIn
Reddit

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.

Related

Particle physicists describe how elementary particles behave using a set of equations called their “Standard Model.” How did they become so confident that a set

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 11/20/2024

If you’re curious to know what my book is about and why it’s called “Waves in an Impossible Sea”, then watching this video is currently

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON 11/04/2024