How a Trigger Can Potentially Make or Break an LHC Discovery

Triggering is an essential part of the Large Hadron Collider [LHC]; there are so many collisions happening each second at the LHC, compared to the number that the experiments can afford to store for later study, that the data about most of the collisions (99.999%) have to be thrown away immediately, completely and permanently within a second after the collisions occur.  The automated filter, partly hardware and partly software, that is programmed to make the decision as to what to keep and what to discard is called “the trigger”.  This all sounds crazy, but it’s necessary, and it works.   Usually.

Let me give you one very simple example of how things can go wrong, and how the ATLAS and CMS experiments [the two general purpose experiments at the LHC] attempted to address the problem.  Before you read this, you may want to read my last post, which gives an overview of what I’ll be talking about in this one.

Click here to read the rest of the article…

Final Days of Busy Visit to CERN

I’m a few days behind (thanks to an NSF grant proposal that had to be finished last week) but I wanted to write a bit more about my visit to CERN, which concluded Nov. 21st in a whirlwind of activity. I was working full tilt on timely issues related to Run 2 of the Large Hadron Collider [LHC], currently scheduled to start early next May.   (You may recall the LHC has been shut down for repairs and upgrades since the end of 2012.)

A certain fraction of my time for the last decade has been taken up by concerns about the LHC experiments’ ability to observe new long-lived particles, specifically ones that aren’t affected by the electromagnetic or strong nuclear forces. (Long-lived particles that are affected by those forces are easier to search for, and are much more constrained by the LHC experiments.  More about them some other time.)

This subject is important to me because it is a classic example of how the trigger systems at LHC experiments could fail us — whereby a spectacular signal of a new phenomena could be discarded and lost in the very process of taking and storing the data! If no one thinks carefully about the challenges of finding long-lived particles in advance of running the LHC, we can end up losing a huge opportunity, unnecessarily. Fortunately some of us are thinking about it, but we are small in number. It is an uphill battle for those experimenters within ATLAS and CMS [the two general purpose experiments at the LHC] who are working hard to make sure they have the required triggers available. I can’t tell you how many times people within the experiments — even at the Naturalness conference I wrote about recently — have told me “such efforts are hopeless”… despite the fact that their own experiments have actually shown, already in public and in some cases published measurements (including this, this, this, this, this, and this), that it is not. Conversely, many completely practical searches for long-lived particles have not been carried out, often because there was no trigger strategy able to capture them, or because, despite the events having been recorded, no one at ATLAS or CMS has had time or energy to actually search through their data for this signal.

Now what is meant by “long-lived particles”? Continue reading

At the Naturalness 2014 Conference

Greetings from the last day of the conference “Naturalness 2014“, where theorists and experimentalists involved with the Large Hadron Collider [LHC] are discussing one of the most widely-discussed questions in high-energy physics: are the laws of nature in our universe “natural” (= “generic”), and if not, why not? It’s so widely discussed that one of my concerns coming in to the conference was whether anyone would have anything new to say that hadn’t already been said many times.

What makes the Standard Model’s equations (which are the equations governing the known particles, including the simplest possible Higgs particle) so “unnatural” (i.e. “non-generic”) is that when one combines the Standard Model with, say, Einstein’s gravity equations. or indeed with any other equations involving additional particles and fields, one finds that the parameters in the equations (such as the strength of the electromagnetic force or the interaction of the electron with the Higgs field) must be chosen so that certain effects almost perfectly cancel, to one part in a gazillion* (something like 10³²). If this cancellation fails, the universe described by these equations looks nothing like the one we know. I’ve discussed this non-genericity in some detail here.

*A gazillion, as defined on this website, is a number so big that it even makes particle physicists and cosmologists flinch. [From Old English, gajillion.]

Most theorists who have tried to address the naturalness problem have tried adding new principles, and consequently new particles, to the Standard Model’s equations, so that this extreme cancellation is no longer necessary, or so that the cancellation is automatic, or something to this effect. Their suggestions have included supersymmetry, warped extra dimensions, little Higgs, etc…. but importantly, these examples are only natural if the lightest of the new particles that they predict have masses that are around or below 1 TeV/c², and must therefore be directly observable at the LHC (with a few very interesting exceptions, which I’ll talk about some other time). The details are far too complex to go into here, but the constraints from what was not discovered at LHC in 2011-2012 implies that most of these examples don’t work perfectly. Some partial non-automatic cancellation, not at one part in a gazillion but at one part in 100, seems to be necessary for almost all of the suggestions made up to now.

So what are we to think of this? Continue reading

How Far We Have Come(t)

It wasn’t that long ago, especially by cometary standards, that humans viewed the unpredictable and spectacular arrival of a comet, its tail spread across the sky unlike any star or planet, as an obviously unnatural event. How could an object flying so dramatically and briefly through the heavens be anything other than a message from a divine force? Even a few hundred years ago…

Today a human-engineered spacecraft descended out of the starry blackness and touched one.

We have known for quite some time that our ancestors widely maligned these icy rocks, often thinking them messengers of death and destruction.  Yes, a comet is, at some level, not much more than an icy rock. Yet, heated by the sun, it can create one of our sky’s most bewitching spectacles. Actually two, because not only can a comet itself be a fabulous sight, the dust it leaves behind can give us meteor showers for many years afterward.

But it doesn’t stop there.  For comets, believed to be frozen relics of the ancient past, born in the early days of the Sun and its planets, may have in fact been messengers not of death but of life.   When they pummeled our poor planet in its early years, far more often than they do today, their blows may have delivered the water for the Earth’s oceans and the chemical building blocks for its biology.   They may also hold secrets to understanding the Earth’s history, and perhaps insights into the more general questions of what happens when stars and their planets form.  Indeed, as scientific exploration of these objects moves forward, they may teach us the answers to questions that we have not yet even thought to ask.

Will the Philae lander maintain its perch or lose its grip? Will it function as long as hoped? No matter what, today’s landing was as momentous as the first spacecraft touchdowns on the Moon, Venus, Mars, Titan (Saturn’s largest moon), and a small asteroid — and also, the first descent of a spacecraft into Jupiter’s atmosphere. Congratulations to those who worked so hard and so long to get this far! Now let’s all hope that they, and their spacecraft, can hang on a little longer.

Day 2 At CERN

Day 2 of my visit to CERN (host laboratory of the Large Hadron Collider [LHC]) was a pretty typical CERN day for me. Here’s a rough sketch of how it panned out:

  • 1000: after a few chores, arrived at CERN by tram. Worked on my ongoing research project #1. Answered an email about my ongoing research project #2.
  • 1100: attended a one hour talk, much of it historical, by Chris Quigg, one of the famous experts on “quarkonium” (atom-like objects made from a quark or anti-quark, generally referring specifically to charm and bottom quarks). Charmonium (charm quark/antiquark atoms) was discovered 40 years ago this week, in two very different experiments.
  • 1200: Started work on the talk that I am giving on the afternoon of Day 3 to some experimentalists who work at ATLAS. [ATLAS and CMS are the two general-purpose experimental detectors at the LHC; they were used to discover the Higgs particle.] It involves some new insights concerning the search for long-lived particles (hypothesized types of new particles that would typically decay only after having traveled a distance of at least a millimeter, and possibly a meter or more, before they decay to other particles.)
  • 1230: Working lunch with an experimentalist from ATLAS and another theorist, mainly discussing triggering, and other related issues, concerning long-lived particles. Learned a lot about the new opportunities that ATLAS will have starting in 2015.
  • 1400: In an extended discussion with two other theorists, got a partial answer to a subtle question that arose in my research project #2.
  • 1415: Sent an email to my collaborators on research project #2.
  • 1430: Back to work on my talk for Day 3. Reading some relevant papers, drawing some illustrations, etc.
  • 1600: Two-hour conversation over coffee with an experimentalist from CMS, yet again about triggering, regarding long-lived particles, exotic decays of the Higgs particle, and both at once. Learned a lot of important things about CMS’s plans for the near-term and medium-term future, as well as some of the subtle issues with collecting and analyzing data that are likely to arise in 2015, when the LHC begins running again.

[Why triggering, triggering, triggering? Because if you don’t collect the data in the first place, you can’t analyze it later!  We have to be working on triggering in 2014-2015 before the LHC takes data again in 2015-2018]

  • 1800: An hour to work on the talk again.
  • 1915: Skype conversation with two of my collaborators in research project #1, about a difficult challenge which had been troubling me for over a week. Subtle theoretical issues and heavy duty discussion, but worth it in the end; most of the issues look like they may be resolvable.
  • 2100: Noticed the time and that I hadn’t eaten dinner yet. Went to the CERN cafeteria and ate dinner while answering emails.
  • 2130: More work on the talk for Day 3.
  • 2230: Left CERN. Wrote blog post on the tram to the hotel.
  • 2300: Went back to work in my hotel room.

Day 1 was similarly busy and informative, but had the added feature that I hadn’t slept since the previous day. (I never seem to sleep on overnight flights.) Day 3 is likely to be as busy as Day 2. I’ll be leaving Geneva before dawn on Day 4, heading to a conference.

It’s a hectic schedule, but I’m learning many things!  And if I can help make these huge and crucial experiments more powerful, and give my colleagues a greater chance of a discovery and a reduced chance of missing one, it will all be worth it.

Off to CERN

After a couple of months of hard work on grant writing, career plans and scientific research, I’ve made it back to my blogging keyboard.  I’m on my way to Switzerland for a couple of weeks in Europe, spending much of the time at the CERN laboratory. CERN, of course, is the host of the Large Hadron Collider [LHC], where the Higgs particle was discovered in 2012. I’ll be consulting with my experimentalist and theorist colleagues there… I have many questions for them. And I hope they’ll have many questions for me too, both ones I can answer and others that will force me to go off and think for a while.

You may recall that the LHC was turned off (as planned) in early 2013 for repairs and an upgrade. Run 2 of the LHC will start next year, with protons colliding at an energy of around 13 TeV per collision. This is larger than in Run 1, which saw 7 TeV per collision in 2011 and 8 TeV in 2012.  This increases the probability that a proton-proton collision will make a Higgs particle, which has a mass of 125 GeV/c², by about a factor of 2 ½.  (Don’t try to figure that out in your head; the calculation requires detailed knowledge of what’s inside a proton.) The number of proton-proton collisions per second will also be larger in Run 2 than in Run 1, though not immediately. In fact I would not be surprised if 2015 is mostly spent addressing unexpected challenges. But Run 1 was a classic: a small pilot run in 2010 led to rapid advances in 2011 and performance beyond expectations in 2012. It’s quite common for these machines to underperform at first, because of unforeseen issues, and outperform in the long run, as those issues are solved and human ingenuity has time to play a role. All of which is merely to say that I would view any really useful results in 2015 as a bonus; my focus is on 2016-2018.

Isn’t it a bit early to be thinking about 2016? No, now is the time to be thinking about 2016 triggering challenges for certain types of difficult-to-observe phenomena. These include exotic, unexpected decays of the Higgs particle, or other hard-to-observe types of Higgs particles that might exist and be lurking in the LHC’s data, or rare decays of the W and Z particle, and more generally, anything that involves a particle whose (rest) mass is in the 100 GeV/c² range, and whose mass-energy is therefore less than a percent of the overall proton-proton collision energy. The higher the collision energy grows, the harder it becomes to study relatively low-energy processes, even though we make more of them. To be able to examine them thoroughly and potentially discover something out of place — something that could reveal a secret worth even more than the Higgs particle itself — we have to become more and more clever, open-minded and vigilant.

Science, Technology and Modern Forms of Evil — Linked. (In.)

Readers are probably wondering what’s become of me, and all I can say is that career challenges are occupying 120% of my time. I do miss the writing, and hope I will get back to it soon, though it seems unlikely it will be before December.  So it is all the more unfortunate that today’s post has almost nothing to do with science at all. It is an apology.

Which is weird. I have nothing to apologize for, and yet I have to apologize to everyone on my contacts list for the unsolicited invitation they received to become my contact on LinkedIn. Or rather, LinkedIn needs to apologize, but they won’t, so I have to do it. Continue reading

Why did so few people see Auroras on Friday night?

Why did so few people see auroras on Friday night, after all the media hype? You can see one of two reasons in the data. As I explained in my last post, you can read what happened in the data shown in the Satellite Environment Plot from this website (warning — they’re going to make new version of the website soon, so you might have to modify this info a bit.) Here’s what the plot looked like Sunday morning.

What the "Satellite Environment Plot" on swpc.noaa.gov looked like on Sunday.  Friday is at left; time shown is "Universal" time; New York time is 4 hours later. There were two storms, shown as the red bars in the Kp index plot; one occurred very early Friday morning and one later on Friday.  You can see the start of the second storm in the "GOES Hp" plot, where the magnetic field goes wild very suddenly.  The storm was subsiding by midnight universal time, so it was mostly over by midnight New York time.

What the “Satellite Environment Plot” on swpc.noaa.gov looked like on Sunday. Friday is at left.  Time shown is “Universal” time (UTC); New York time is 4 hours later at this time of year. There were two storms, shown as the red bars in the Kp index chart (fourth line); one occurred very early Friday morning and one later on Friday. You can see the start of the second storm in the “GOES Hp” chart (third line), where the magnetic field goes wild very suddenly. The storm was subsiding by midnight Universal time, so it was mostly over by midnight New York time.

What the figure shows is that after a first geomagnetic storm very early Friday, a strong geomagnetic storm started (as shown by the sharp jump in the GOES Hp chart) later on Friday, a little after noon New York time [“UTC” is currently New York + 4/5 hours], and that it was short — mostly over before midnight. Those of you out west never had a chance; it was all over before the sun set. Only people in far western Europe had good timing. Whatever the media was saying about later Friday night and Saturday night was somewhere between uninformed and out of date.  Your best bet was to be looking at this chart, which would have shown you that (despite predictions, which for auroras are always quite uncertain) there was nothing going on after Friday midnight New York time.

But the second reason is something that the figure doesn’t show. Even though this was a strong geomagnetic storm (the Kp index reached 7, the strongest in quite some time), the auroras didn’t migrate particularly far south. They were seen in the northern skies of Maine, Vermont and New Hampshire, but not (as far as I know) in Massachusetts. Certainly I didn’t see them. That just goes to show you (AccuWeather, and other media, are you listening?) that predicting the precise timing and extent of auroras is educated guesswork, and will remain so until current knowledge, methods and information are enhanced. One simply can’t know for sure how far south the auroras will extend, even if the impact on the geomagnetic field is strong.

For those who did see the auroras on Friday night, it was quite a sight. And for the rest of us who didn’t see them this time, there’s no reason for us to give up. Solar maximum is not over, and even though this is a rather weak sunspot cycle, the chances for more auroras over the next year or so are still pretty good.

Finally, a lesson for those who went out and stared at the sky for hours after the storm was long over — get your scientific information from the source!  There’s no need, in the modern world, to rely on out-of-date media reports.