Particle physicists, cataloging the fundamental forces of nature, have named two of them the strong nuclear force and the weak nuclear force. [A force is simply any phenomenon that pushes or pulls on objects.] More generally they talk about strong and weak forces, speaking of electromagnetism as rather weak and gravity as extremely weak. What do the words “strong” and “weak” mean here? Don’t electric forces become strong at short distances? Isn’t gravity a pretty strong force, given that it makes it hard to lift a bar of gold?
Well, these words don’t mean what you think. Yes, the electric force between two electrons becomes stronger (in absolute terms) as you bring them closer together; the force grows as one over the square of the distance between them. Yet physicists, when speaking their own language to each other, will view this behavior as what is expected of a typical force, and so will say that “electromagnetism’s strength is unchanging with distance — and it is rather weak at all distances.
And the strength of gravity between the Earth and a bar of gold isn’t relevant either; physicists are interested in the strength of forces between individual elementary (or at least small) particles, not between large objects containing enormous numbers of particles.
Clearly there is a language difference here… as is often the case with words in English and words in Physics-ese. It requires translation. So I have now written an article explaining the language of “strong” and “weak” forces used by particle physicists, describing how it works, why it is useful, and what it teaches us about the known forces: gravity, electromagnetism, the strong nuclear force, the weak nuclear force, and the (still unobserved but surely present) Higgs force.