In recent posts (here and here), I showed you methods that anyone can use for estimating the planets’ distances from the Sun; it just takes high-school trigonometry. And even more recently I showed how, using just algebra, you can easily obtain the planets’ orbital periods from their cycles as we see them from Earth, starting with one solar conjunction and ending at the next.
Much of this work was done by Nicolai Copernicus himself, the most famous of those philosophers who argued for a Sun-centered universe rather than an Earth-centered universe during the millennia before modern science. He had all the ingredients we have, minus knowledge of Uranus and Neptune, and minus the clues we obtain from telescopes, which would have confirmed he was correct.
Copernicus knew, therefore, that although the planetary distances from the Sun and their cycles in the sky (which astrologers [not astronomers] have focused on for centuries) don’t seem to be related, the distances and their orbital times around the Sun are much more closely related. That’s what we saw in the last post.
Let me put these distances and times, relative to the Earth-Sun distance and the Earth year, onto a two-dimensional plot. [Here the labels are for Mercury (Me), Venus (V), Mars (Ma), Jupiter (J), Saturn (S), Uranus (U) and Neptune (N).] The first figure shows the planets out to Saturn (the ones known to Copernicus).
The second shows them out to Neptune, though it bunches up the inner planets to the point that you can’t really see them well.
You can see the planets all lie along a curve that steadily bends down and to the right.
Copernicus knew all of the numbers that go into Figure 1, with pretty moderate precision. But there’s something he didn’t recognize, which becomes obvious if we use the right trick. In the last post, we sometimes used a logarithmic axis to look at the distances and the times. Now let’s replot Figure 2 using a logarithmic axis for both the distances and the times.
Oh wow. (I’m sure that’s the equivalent of what Kepler said in 1618, when he first painstakingly calculated the equivalent of this plot.)
It looks like a straight line. Is it as straight as it looks?
And now we see three truly remarkable things about this graph:
- First, the planet’s distances to the Sun and orbital times lie on a very straight line on a logarithmic plot.
- Second, the slope of the line is 2/3 (2 grid steps up for every 3 steps right) rather than, say, 7.248193 .
- Third, the line goes right through the point (1,1), where the first horizontal and first vertical lines cross.
What do they mean?
(more…)