Of Particular Significance

Author: Matt Strassler

Dark Matter, Dark Matter, Everywhere! It’s in your shoes, it’s in your coffee, it’s in the stars and even in your favorite cheese… at least, it’s widely believed to be wandering all about, mostly unnoticed.  Still it’s not quite as inscrutable as its reputation would lead you to believe.  It’s responsible for a galactic glow, an abundance of anti-matter, and now — three quiet little taps in an underground mine.

Or is it?

Apparent effects of dark matter have been “discovered” so many times in the last decade that you may by now feel a bit jaded, or at least dispassionate.  Certainly I do.  Some day, some year, one of these many hints may turn out to be the real thing. But of the current hints? We’ve got at least six, and they can’t all be real, because they’re not consistent with one other. It’s certain that several of them are false alarms; and once you open that door a crack, you have to consider flinging it wide open, asking: why can’t “several” be “all six”?  All of the dark-matter search experiments are difficult, as they involve pushing the technological envelope. And as anyone with experience in science knows, most of the exciting-sounding results emerging from forefront experiments don’t survive the test of time. Never underestimate the challenge of science at the frontier of knowledge!

Still, as of two weeks ago, we have a new dark matter hint to talk about. So here’s a summary of the various hints, including the new one, exploring their implications and their consistency.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON April 29, 2013

Today I’m attending the first day of a short workshop of particle theorists and experimentalists at the Princeton Center for Theoretical Science, a sort of “Where are we now and where are we going?” meeting. It’s entitled “Higgs Physics After Discovery”, but discussion will surely range more widely.

What, indeed, are the big questions facing particle physics in the short-term, meaning the next few months? Well, here are a few key ones:

  • A Higgs particle of some type has been discovered by the ATLAS and CMS experiments at the Large Hadron Collider [LHC] (with some contributions from the Tevatron experiments DZero and CDF); is it the simplest possible type of Higgs particle (the “Standard Model Higgs“) or is it more complex? What data analysis can be done on the LHC’s data from 2011-2012 to shed more light on this question?
  • More generally, from the LHC’s huge data set from 2011-2012 — specifically, from the data analysis that has been done so far — what precisely have we learned? (It’s increasingly important to go beyond the rougher estimates that were appropriate last year when the data was still pouring in.) What types of new phenomena have been excluded, and to what extent?
  • What other types of data analysis should be done on the 2011-2012 data, in order to look for other new phenomena that could still be lurking there? (There’s still a lot to be done on this question!) And what types of work should theoretical particle physicists do to help the experimentalists address this issue?
  • Several experiments from the Tevatron and the LHC, notably the LHCb experiment, have learned that newly measured decays of  certain mesons (hadrons with equal numbers of quarks and anti-quarks) that contain heavy quarks are roughly consistent with the Standard Model (the equations we use to describe the known elementary particles and forces, and a simplest type of Higgs field and Higgs particle.) How do these findings constrain the possibility of other new phenomena?
  • Looking ahead to 2015, when the LHC will begin running again at a higher energy per proton-proton collision, what preparations need to be made? Especially, what needs to be done to refine the triggering systems at ATLAS, CMS and LHCb, so that the maximum information can be extracted from the new data, and no important information is unnecessarily discarded?
  • Which, if any, of the multiple (but mostly mutually inconsistent) experimental hints of dark matter should be taken seriously? Which possibilities do the various dark matter experiments, and the LHC’s data, actually exclude or favor?

That might be it for the very near term. There are lots of other questions in the medium- to long-term, among which is the big question of what types of experiments should be done over the next 10 – 20 years. One challenge is that the LHC’s data hasn’t yet given us a clear target other than the Higgs particle itself. An obvious possible experiment to do is to study the Higgs in more detail, using an electron/anti-electron collider — historically this has been a successful strategy that has been used on almost every new apparently-elementary particle. But there are a lot of other possibilities, including raising the LHC’s collisions to even higher energy than we’ll see in 2015, using more powerful magnets currently under development.

If there are other near-term questions I’ve forgotten about, I’m sure I’ll be reminded at the workshop, and I’ll add them in.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON April 25, 2013

The scourge of “terrorism” — for today’s purposes, let’s take the word to mean attacks on civilians perpetrated by individuals or by small, stateless groups — is a part of human existence going back as far as you want to look. If a person has what he or she views as a grievance, then attacking people who are loosely connected to that grievance, in order to kill and maim some of them and frighten the rest, is obviously one of the options, immoral and hideous as it may be. There’s nothing modern about the strategy of terror.

What’s new about terrorism in the modern world is science. Science, via the technology that it makes possible, is a great multiplier. It allows an individual, or a small group, to exploit power inherent in nature, turning a task that no human could perform, or that would take a cast of thousands, into something that can be done with ease by a few people, or even just one. Of course this multiplied power has many benefits for us as individuals and for society as a whole; think of trains, tunnel-boring machines, skyscraper cranes, snow-blowers, pneumatic drills, aircraft engines, power plants, and on and on. But it also poses many risks and challenges that we have to face, as individuals and as a global civilization. (more…)

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON April 24, 2013

My Structure of Matter series has been on hold for a bit, as I have been debating how to describe protons and neutrons.  These constituents of atomic nuclei, which, when combined with electrons, form atoms, are drawn in most cartoons of atoms as simple spheres.  But not only are they much, much smaller than they are drawn in those cartoons, they hide within them a surprising commotion, one that cannot be anticipated from the relatively simple structures of atoms and of nuclei.

As I’ve described in my new article, along the lines of this short article and this more detailed one that I wrote some time ago in the context of the Large Hadron Collider, the story that scientists tell the public most often, that “a proton is made from two up quarks and a down quark”, is not in fact the full story — and in some ways it is deeply misleading.  The structure of protons and neutrons is so entirely unfamiliar, and so complicated, that scientists neither have a simple way of calculating it, nor an entirely agreed-upon way to describe it to the public, or even to physics students.  But I believe my way of describing it will be satisfactory to most particle physicists.

The new article is not entirely complete; it is perhaps only half its final length.  I’ll be adding some further sections that cover some subtle issues.  But since I suspect many people won’t feel the need to read those later sections, the completed part is written to stand on its own.  If you like, take a look and let me know if you have questions, suggestions or corrections.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON April 15, 2013

[UPDATE, midnight New York time: the cloud of particles from the solar flare arrived a few hours ago, but it didn’t impact the earth’s magnetic field quite as hard as the best-guess forecast. (Remember the probability of a geomagnetic storm was only 60%; i.e. the probability of no storm was 40%.) Right now, the auroras are likely visible in Canada but probably not in the US. This could change, but don’t get your hopes up too high; we may have to wait for the next solar flare.]

I’ve been sidelined with computer troubles and non-science activities, so first, a belated thanks to everyone who left a thoughtful comment after Monday’s post and question about communicating science to the public.  I appreciate hearing your views, especially from readers with a diversity of backgrounds!

Now, many of you may have heard that there is a forecast of northern (and southern) lights, also known as auroras, tonight.  What you’ve heard is correct: today’s NOAA space-weather forecast, from  http://www.swpc.noaa.gov/forecast.html,  says

VI.  Geomagnetic Activity Probabilities 13 Apr-15 Apr
A.  Middle Latitudes
Active                30/30/15
Minor Storm           35/45/05
Major-severe storm    10/15/01
B.  High Latitudes
Active                10/15/15
Minor Storm           20/25/20
Major-severe storm    60/35/20

i.e. it shows that even in mid-latitudes (meaning northern US and southern Canada, and northern Europe, along perhaps with parts of Australia and New Zealand [?]) they are estimating a 35%-45% probability of a minor `geomagnetic storm’ tonight, with a 10-15% probability of a major storm… and a geomagnetic storm, which literally means a lot of activity in the earth’s magnetic field, generally leads to auroras further away from the north and south pole than usual. (more…)

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON April 13, 2013

Yesterday I gave a public talk at Ursinus College, a liberal arts college in aptly named Collegeville, Pennsylvania. [For those outside the U.S.; a `college’ in the U.S. is a university whose students are all undergraduates, mainly 18-22 years old; and a “liberal arts college”  aims to give students a broad education in the arts and sciences, along with more focused training in their chosen discipline.] My visit was sponsored by the college’s Center for Science and the Common Good, an impressive little program funded by the Howard Hughes Medical Institute (kudos to them!).  Its goal is to assure that the Center’s `fellows’ — the students in the program — are not only trained in their scientific fields but also become versed in thinking broadly about the role of science in our culture and society, and about how science is communicated to the public.

These wider issues are ones I think about a lot — I myself was educated at a liberal arts college — and are what motivated me to start this website and blog.  So I was honored that the Center invited me to visit. And they kept me (pleasantly) busy! In addition to the public talk, I spoke at length with the fellows of the Center about the role of science and scientists in society, as well as about the Center’s program and their career plans, and I also gave the undergraduate physics majors a slightly more technical tour of modern particle physics.

Since the Center was my host, my public talk was somewhat different from ones I’ve given previously.  Rather than focus entirely on the science behind the Higgs particle and field, I included some comments concerning the role of scientists in communicating science to the public. Among the meta-scientific questions I touched on were these:

  • What role should and can be played by blogs and websites run by scientists?
  • Can (or should) anything be done about the wildly inaccurate science reporting that one so often sees in the media?
  • Is it really that important that the public be informed about scientific research — given that public knowledge of the details of law, medicine, construction, accounting, plumbing, and other technical fields is also very limited?

I’ve got my own (tentative) answers to these questions, but if you’d like to weigh in, I’d be interested in your opinions. (If you do decide to make a comment, please feel free to include a parenthetic remark describing how much science you yourself know, and whether you learned it, say, in college, from magazines or popular books, etc.  This will give us all some perspective on what might shape your views.)

Thanks again to Ursinus College for the invitation and a very interesting visit!

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON April 9, 2013

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.