It’s been a quiet couple of weeks on the blog, something which often indicates that it’s been anything but quiet off the blog. Such was indeed the case recently.
For one thing, I was in Canada last week. I had been kindly invited to give two talks at the University of Western Ontario, one of Canada’s leading universities for science. One of the talks, the annual Nerenberg lecture (in memory of Professor Morton Nerenberg) is intended for the general public, so I presented a lecture on The 2013 Nobel Prize: The 50-Year Quest for the Higgs Boson. While I have given a talk on this subject before (an older version is on-line) I felt some revisions would be useful. The other talk was for members of the applied mathematics department, which hosts a diverse group of academics. Unlike a typical colloquium for a physics department, where I can assume that the vast majority of the audience has had university-level quantum mechanics, this talk required me to adjust my presentation for a much broader scientific audience than usual. I followed, to an extent, my website’s series on Fields and Particles and on How the Higgs Field Works, both of which require first-year university math and physics, but nothing more. Preparation of the two talks, along with travel, occupied most of my free time over recent days, so I haven’t been able to write, or even respond to readers’ questions, unfortunately.
I also dropped in at Canada’s Perimeter Institute on Friday, when it was hosting a small but intense one-day workshop on the recent potentially huge discovery by the BICEP2 experiment of what appears to be a signature of gravitational waves from the early universe. This offered me an opportunity to hear some of the world’s leading experts talking about the recent measurement and its potential implications (if it is correct, and if the simplest interpretation of it is correct). Alternative explanations of the experiment’s results were also mentioned. Also, there was a lot of discussion about the future, both the short-term and the long-term. Quite a few measurements will be made in the next six to twelve months that will shed further light on the BICEP2 measurement, and on its moderate conflict with the simplest interpretation of certain data from the Planck satellite. Further down the line, a very important step will be to reduce the amount of B-mode polarization that arises from the gravitational lensing of E-mode polarization, a method called “delensing”; this will make it easier to observe the B-mode polarization from gravitational waves (which is what we’re interested in) even at rather small angular scales (high “multipoles”). Looking much further ahead, we will be hearing a lot of discussion about huge new space-based gravitational wave detectors such as BBO [Big Bang Observatory]. (Actually the individual detectors are quite small, but they are spaced at great distances.) These can potentially measure gravitational waves whose wavelength is comparable to the size of the Earth’s orbit or even larger, which is still much smaller than those apparently detected by BICEP2 in the polarization of the cosmic microwave background. Anyway, assuming what BICEP2 has really done is discover gravitational waves from the very early universe, this subject now a very exciting future and there is lots to do, to discuss and to plan.
I wish I could promise to provide a blog post summarizing carefully what I learned at the conference. But unfortunately, that brings me to the other reason blogging has been slow. While I was away, I learned that the funding situation for science in the United States is even worse than I expected. Suffice it to say that this presents a crisis that will interfere with blogging work, at least for a while.