Of Particular Significance

Tag: trigger

Last week, when I wasn’t watching democracy bleed, I was participating in an international virtual workshop, attended by experts from many countries. This meeting of particle experimenters and particle theorists focused on the hypothetical possibility known as “hidden valleys” or “dark sectors”. (As shorthand I’ll refer to them as “HV/DS”). The idea of an HV/DS is that the known elementary particles and forces, which collectively form the Standard Model of particle physics, might be supplemented by additional undiscovered particles that don’t interact with the known forces (other than gravity), but have forces of their own. All sorts of interesting and subtle phenomena, such as this one or this one or this one, might arise if an HV/DS exists in nature.

Of course, according to certain self-appointed guardians of truth, the Standard Model is clearly all there is to be found at the Large Hadron Collider [LHC], all activities at CERN are now just a waste of money, and there’s no point in reading this blog post. Well, I freely admit that it is possible that these individuals have a direct line to God, and are privy to cosmic knowledge that I don’t have. But as far as I know, physics is still an experimental science; our world may be going backwards in many other ways, but I don’t think we should return to Medieval modes of thought, where the opinion of a theorist such as Aristotle was often far more important than actually checking whether that opinion was correct.

According to the methods of modern science, the views of any particular scientist, no matter how vocal, have little value. It doesn’t matter how smart they are; even Nobel Prize-winning theorists have often been wrong. For instance, Murray Gell-Mann said for years that quarks were just a mathematical organizing principle, not actual particles; Martinus Veltman insisted there would be no Higgs boson; Frank Wilczek was confident that supersymmetry would be found at the LHC; and we needn’t rehash all the things that Newton and Einstein were wrong about. In general, theorists who make confident proclamations about nature have a terrible track record, and only get it right very rarely.

The central question for modern science is not about theorists at all. It is this: “What do we know from experiments?”

And when it comes to the possibility of an HV/DS, the answer is “not much… not yet anyway.”

The good news is that we do not need to build another multibillion dollar experimental facility to search for this kind of physics. The existing LHC will do just fine for now; all we need to do is take full advantage of its data. But experimenters and theorists working together must develop the right strategies to search for the relevant clues in the LHC’s vast data sets. That requires completely understanding how an HV/DS might manifest itself, a matter which is far from simple.

Last week’s workshop covered many topics related to these issues. Today I’ll just discuss one: an example of a powerful, novel search strategy used by the ATLAS experiment. (It’s over a year old, but it appeared as my book was coming out, and I was too busy to cover it then.) I’ll explain why it is a good way to look for strong forces in a hidden valley/dark sector, and why it covers ground that, in the long history of particle physics, has never previously been explored.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 29, 2025

Happy New Year! 2025 is the centenary of some very important events in the development of quantum physics — the birth of new insights, of new mathematics, and of great misconceptions. For this reason, I’ve decided that this year I’ll devote more of this blog to quantum fundamentals, and take on some of the tricky issues that I carefully avoided in my recent book.

My focus will be on very basic questions, such as: How does quantum physics work, to the extent we humans understand it? Which of the widely-held and widely-promulgated ideas about quantum weirdness are true? And for those that aren’t, what is the right way to think about them?

I’ll frame some of this discussion in the context of the quantum two-slit experiment, because

  • it’s famous,
  • it’s often poorly explained
  • it’s often poorly understood,
  • it highlights (when properly understood) an extraordinarily strange aspect of quantum physics.

Not that I’ll cover this subject all in one post… far from it! It’s going to take quite some time.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 16, 2025

Tonight (January 13th) offers a wonderful opportunity for all of us who love the night sky, and also for science teachers. For those living within the shaded region of Fig. 1, the planet Mars will disappear behind the Moon, somewhere between 9 and 10 pm Eastern (6 and 7 pm Pacific), before reappearing an hour later. Most easily enjoyed with binoculars. (And, umm, without clouds, which will be my own limitation, I believe…)

For everyone else, look up anyway! Mars and the Moon will appear very close together, a lovely pair.

Figure 1: the region of Earth’s surface where Mars will be seen to disappear behind the Moon. Elsewhere Mars and the Moon will appear very close together, itself a beautiful sight. Image from in-the-sky.org.
(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 13, 2025

When it comes to the weak nuclear force and why it is weak, there’s a strange story which floats around. It starts with a true but somewhat misleading statement:

  • The weak nuclear force (which is weak because its effects only extend over a short range) has its short range because the particles which mediate the force, the W and Z bosons, have mass [specifically, they have “rest mass”.] This is in contrast to electromagnetic forces which can reach out over great distances; that’s because photons, the particles of light which mediate that force, have no rest mass.

This is misleading because fields mediate forces, not particles; it’s the W and Z fields that are the mediators for the weak nuclear force, just as the electromagnetic field is the mediator for the electromagnetic force. (When people speak of forces as due to exchange of “virtual particles” — which aren’t particles — they’re using fancy math language for a simple idea from first-year undergraduate physics.)

Then things get worse, because it is stated that

  • The connection between the W and Z bosons’ rest mass and the short range of the weak nuclear force is that
    • the force is created by the exchange of virtual W and Z bosons, and
    • due to the quantum uncertainty principle, these virtual particles with mass can’t live as long and/or travel as far as virtual photons can, shortening their range.

This is completely off-base. In fact, quantum physics plays no role in why the weak nuclear force is weak and short-range. (It plays a big role in why the strong nuclear force is strong and short-range, but that’s a tale for another day.)

I’ve explained the real story in a new webpage that I’ve added to my site; it has a non-technical explanation, and then some first-year college math for those who want to see it. It’s gotten some preliminary comments that have helped me improve it, but I’m sure it could be even better, and I’d be happy to get your comments, suggestions, questions and critiques if you have any.

[P.S. — if you try but are unable to leave a comment on that page, please leave one here and tell me what went wrong; and if you try but are unable to leave a comment here too for some reason, please send me a message to let me know.]

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 10, 2025

In a previous post, I showed you that the Standard Model, armed with its special angle θw of approximately 30 degrees, does a pretty good job of predicting a whole host of processes in the Standard Model. I focused attention on the decays of the Z boson, but there were many more processes mentioned in the bonus section of that post.

But the predictions aren’t perfect. They’re not enough to convince a scientist that the Standard Model might be the whole story. So today let’s bring these predictions into better focus.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 19, 2024

Well, gosh… what nice news as 2024 comes to a close… My book has received a ringing endorsement from Ethan Siegel, the science writer and Ph.D. astrophysicist who hosts the well-known, award-winning blog “Starts with a Bang“. Siegel’s one of the most reliable and prolific science writers around — he writes for BigThink and has published in Forbes, among others — and it’s a real honor to read what he’s written about Waves in an Impossible Sea.

His brief review serves as an introduction to an interview that he conducted with me recently, which I think many of you will enjoy. We discussed science — the nature of particles/wavicles, the Higgs force, the fabric (if there is one) of the universe, and the staying power of the idea of supersymmetry among many theoretical physicists — and science writing, including novel approaches to science communication that I used in the book.

If you’re a fan of this blog or of the book, please consider sharing his review on social media (as well as the Wall Street Journal’s opinion.) The book has sold well this year, but I am hoping that in 2025 it will reach an even broader range of people who seek a better understanding of the cosmos, both in the large and in the small.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 17, 2024

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.