Yesterday’s Quiz Question: when was the first Higgs particle produced by humans? (where admittedly “Higgs” should have read “Higgs-like”) got many answers, but not the one I think is correct. Here’s what I believe is the answer.
——
[UPDATE: After this post was written, but before it went live, commenter bobathon got the right answer — at 6:30 Eastern, just under the wire! Well done!]
The first human-produced Higgs particle [more precisely, the Higgs-like particle with a mass of about 125 GeV/c2 whose discovery was reported earlier this month, and which I’ll refer to as “`H”– but I’ve told you why I think it is a Higgs of some sort] was almost certainly created in the United States, at the Fermilab National Accelerator Center outside Chicago. Back in 1988 and 1989, Fermilab’s accelerator called the Tevatron created collisions within the then-new CDF experiment, during the often forgotten but very important “Run Zero”. The energy per collision, and the total data collected, were just enough to make it nearly certain that an H particle was created during this run.
Run Zero, though short, was important because it allowed CDF to prove that precision mass measurements were possible at a proton collider. They made a measurement of the Z particle’s mass that almost rivaled the one made simultaneously at the SLC electron-positron collider. This surprised nearly everyone. [Unfortunately I was out of town and missed the scene of disbelief, back in 1989, when CDF dropped this bombshell during a conference at SLAC, the SLC’s host laboratory.] Nowadays we take it for granted that the best measurement of the W particle’s mass comes from the Tevatron experiments, and that the Large Hadron Collider [LHC] experiments will measure the H particle’s mass to better than half a percent — but up until Run Zero it was widely assumed to be impossible to make measurements of such quality in the messy environment of collisions that involve protons.
Anyway, it is truly astonishing that we have to go back to 1988-1989 for the first artificially produced Higgs(-like) particle!! I was a first-year graduate student, and had just learned what Higgs particles were; precision measurements of the Z particle were just getting started, and the top quark hadn’t been found yet. It took 23 years to make enough of these Higgs(-like) particles to convince ourselves that they were there, using the power of the CERN laboratory’s Large Hadron Collider [LHC]!
[Perhaps this remarkable history will help you understand why I keep saying that although the LHC experiments haven’t yet found something unexpected in their data, that absolutely doesn’t mean that nothing unexpected is there. What’s new just may be hard to see, waiting to be noticed with more sophisticated methods and/or more data.]