Now finally, we come to the heart of the matter of quantum interference, as seen from the perspective of in 1920’s quantum physics. (We’ll deal with quantum field theory later this year.)
Last time I looked at some cases of two particle states in which the particles’ behavior is independent — uncorrelated. In the jargon, the particles are said to be “unentangled”. In this situation, and only in this situation, the wave function of the two particles can be written as a product of two wave functions, one per particle. As a result, any quantum interference can be ascribed to one particle or the other, and is visible in measurements of either one particle or the other. (More precisely, it is observable in repeated experiments, in which we do the same measurement over and over.)
In this situation, because each particle’s position can be studied independent of the other’s, we can be led to think any interference associated with particle 1 happens near where particle 1 is located, and similarly for interference involving the second particle.
But this line of reasoning only works when the two particles are uncorrelated. Once this isn’t true — once the particles are entangled — it can easily break down. We saw indications of this in an example that appeared at the ends of my last two posts (here and here), which I’m about to review. The question for today is: what happens to interference in such a case?
Correlation: When “Where” Breaks Down
Let me now review the example of my recent posts. The pre-quantum system looks like this

Notice the particles are correlated; either both particles are moving to the left OR both particles are moving to the right. (The two particles are said to be “entangled”, because the behavior of one depends upon the behavior of the other.) As a result, the wave function cannot be factored (in contrast to most examples in my last post) and we cannot understand the behavior of particle 1 without simultaneously considering the behavior of particle 2. Compare this to Fig. 2, an example from my last post in which the particles are independent; the behavior of particle 2 is the same in both parts of the superposition, independent of what particle 1 is doing.

Let’s return now to Fig. 1. The wave function for the corresponding quantum system, shown as a graph of its absolute value squared on the space of possibilities, behaves as in Fig. 3.

But as shown last time in Fig. 19, at the moment where the interference in Fig. 3 is at its largest, if we measure particle 1 we see no interference effect. More precisely, if we do the experiment many times and measure particle 1 each time, as depicted in Fig. 4, we see no interference pattern.

We see something analogous if we measure particle 2.
Yet the interference is plain as day in Fig. 3. It’s obvious when we look at the full two-dimensional space of possibilities, even though it is invisible in Fig. 4 for particle 1 and in the analogous experiment for particle 2. So what measurements, if any, can we make that can reveal it?
The clue comes from the fact that the interference fringes lie at a 45 degree angle, perpendicular neither to the x1 axis nor to the x2 axis but instead to the axis for the variable 1/2(x1 + x2), the average of the positions of particle 1 and 2. It’s that average position that we need to measure if we are to observe the interference.
But doing so requires we that we measure both particles’ positions. We have to measure them both every time we repeat the experiment. Only then can we start making a plot of the average of their positions.
When we do this, we will find what is shown in Fig 5.
- The top row shows measurements of particle 1.
- The bottom row shows measurements of particle 2.
- And the middle row shows a quantity that we infer from these measurements: their average.
For each measurement, I’ve drawn a straight orange line between the measurement of x1 and the measurement of x2; the center of this line lies at the average position 1/2(x1+x2). The actual averages are then recorded in a different color, to remind you that we don’t measure them directly; we infer them from the actual measurements of the two particles’ positions.

In short, the interference is not associated with either particle separately — none is seen in either the top or bottom rows. Instead, it is found within the correlation between the two particles’ positions. This is something that neither particle can tell us on its own.
And where is the interference? It certainly lies near 1/2(x1+x2)=0. But this should worry you. Is that really a point in physical space?
You could imagine a more extreme example of this experiment in which Fig. 5 shows particle 1 located in Boston and particle 2 located in New York City. This would put their average position within appropriately-named Middletown, Connecticut. (I kid you not; check for yourself.) Would we really want to say that the interference itself is located in Middletown, even though it’s a quiet bystander, unaware of the existence of two correlated particles that lie in opposite directions 90 miles (150 km) away?
After all, the interference appears in the relationship between the particles’ positions in physical space, not in the positions themselves. Its location in the space of possibilities (Fig. 3) is clear. Its location in physical space (Fig. 5) is anything but.
Still, I can imagine you pondering whether it might somehow make sense to assign the interference to poor, unsuspecting Middletown. For that reason, I’m going to make things even worse, and take Middletown out of the middle.
A Second System with No Where
Here’s another system with interference, whose pre-quantum version is shown in Figs. 6a and 6b:

The corresponding wave function is shown in Fig. 7. Now the interference fringes are oriented diagonally the other way compared to Fig. 3. How are we to measure them this time?

The average position 1/2(x1+x2) won’t do; we’ll see nothing interesting there. Instead the fringes are near (x1-x2)=4 — that is, they occur when the particles, no matter where they are in physical space, are at a distance of four units. We therefore expect interference near 1/2(x1-x2)=2. Is it there?
In Fig. 8 I’ve shown the analogue of Figs. 4 and 5, depicting
- the measurements of the two particle positions x1 and x2, along with
- their average 1/2(x1+x2) plotted between them (in yellow)
- (half) their difference 1/2(x1-x2) plotted below them (in green).
That quantity 1/2(x1-x2) is half the horizontal length of the orange line. Hidden in its behavior over many measurements is an interference pattern, seen in the bottom row, where the 1/2(x1-x2) measurements are plotted. [Note also that there is no interference pattern in the measurements of 1/2(x1+x2), in contrast to Fig. 4.]

Now the question of the hour: where is the interference in this case? It is found near 1/2(x1-x2)=2 — but that certainly is not to be identified with a legitimate position in physical space, such as the point x=2.
First of all, making such an identification in Fig. 8 would be like saying that one particle is in New York and the other is in Boston, while the interference is 150 kilometers offshore in the ocean. But second and much worse, I could change Fig. 8 by moving both particles 10 units to the left and repeating the experiment. This would cause x1, x2, and 1/2(x1-x2) in Fig. 8 to all shift left by 10 units, moving them off your computer screen, while leaving 1/2(x1-x2) unchanged at 2. In short, all the orange and blue and yellow points would move out of your view, while the green points would remain exactly where they are. The difference of positions — a distance — is not a position.
If 10 units isn’t enough to convince you, let’s move the two particles to the other side of the Sun, or to the other side of the galaxy. The interference pattern stubbornly remains at 1/2(x1-x2)=2. The interference pattern is in a difference of positions, so it doesn’t care whether the two particles are in France, Antarctica, or Mars.
We can move the particles anywhere in the universe, as long as we take them together with their average distance remaining the same, and the interference pattern remains exactly the same. So there’s no way we can identify the interference as being located at a particular value of x, the coordinate of physical space. Trying to do so creates nonsense.
This is totally unlike interference in water waves and sound waves. That kind of interference happens in a someplace; we can say where the waves are, how big they are at a particular location, and where their peaks and valleys are in physical space. Quantum interference is not at all like this. It’s something more general, more subtle, and more troubling to our intuition.
[By the way, there’s nothing special about the two combinations 1/2(x1+x2) and 1/2(x1-x2), the average or the difference. It’s easy to find systems where the intereference arises in the combination x1+2x2, or 3x1-x2, or any other one you like. In none of these is there a natural way to say “where” the interference is located.]
The Profound Lesson
From these examples, we can begin to learn a central lesson of modern physics, one that a century of experimental and theoretical physics have been teaching us repeatedly, with ever greater subtlety. Imagining reality as many of us are inclined to do, as made of localized objects positioned in and moving through physical space — the one-dimensional x-axis in my simple examples, and the three-dimensional physical space that we take for granted when we specify our latitude, longitude and altitude — is simply not going to work in a quantum universe. The correlations among objects have observable consequences, and those correlations cannot simply be ascribed locations in physical space. To make sense of them, it seems we need to expand our conception of reality.
In the process of recognizing this challenge, we have had to confront the giant, unwieldy space of possibilities, which we can only visualize for a single particle moving in up to three dimensions, or for two or three particles moving in just one dimension. In realistic circumstances, especially those of quantum field theory, the space of possibilities has a huge number of dimensions, rendering it horrendously unimaginable. Whether this gargantuan space should be understood as real — perhaps even more real than physical space — continues to be debated.
Indeed, the lessons of quantum interference are ones that physicists and philosophers have been coping with for a hundred years, and their efforts to make sense of them continue to this day. I hope this series of posts has helped you understand these issues, and to appreciate their depth and difficulty.
Looking ahead, we’ll soon take these lessons, and other lessons from recent posts, back to the double-slit experiment. With fresher, better-informed eyes, we’ll examine its puzzles again.