Tag Archives: SterileNeutrinos

The Standard Model More Deeply: The Nature of Neutrinos

Earlier this week I explained how neutrinos can get their mass within the Standard Model of particle physics, either by engaging with the Higgs field once, the way the other particles do, or by engaging with it twice. In the first case, the neutrinos would be “Dirac fermions”, just like electrons and quarks. In the second, they’d be “Majorana fermions”. Decades ago, in the original Standard Model, neutrinos were thought not to have any mass at all, and were “Weyl fermions.” Although I explained in my last post what these three types of fermions are, today I want go a little deeper, and provide you with a diagrammatic way of understanding the differences among them, as well as a more complete view of the workings of the “see-saw mechanism”, which may well be the cause of the neutrinos’ exceptionally small masses.

[N.B. On this website, mass means “rest mass” except when otherwise indicated.]

The Three Types of Fermions

What’s a fermion? All particles in our world are either fermions or bosons. Bosons are highly social and are happy to all do the same thing, as when huge numbers of photons are all locked in synch to make a laser. Fermions are loners; they refuse to do the same thing, and the “Pauli exclusion principle” that plays a huge role in atomic physics, creating the famous shell structure of atoms, arises from the fact that electrons are fermions. The Standard Model fermions and their masses are shown below.

Figure 1: The masses of the known elementary particles, showing how neutrino masses are much smaller and much more uncertain than those of all the other particles with mass. The horizontal grey bar shows the maximum masses from cosmic measurements; the vertical grey bars give an idea of where the masses might lie based on current knowledge, indicating the still very substantial uncertainty.
Continue reading