The Summer View at CERN

For the first time in some years, I’m spending two and a half weeks at CERN (the lab that hosts the Large Hadron Collider [LHC]). Most of my recent visits have been short or virtual, but this time* there’s a theory workshop that has collected together a number of theoretical particle physicists, and it’s a … Read more

The Two-Photon Excess at LHC Brightens Slightly

Back in December 2015, there was some excitement when the experiments ATLAS and CMS at the Large Hadron Collider [LHC] — especially ATLAS — reported signs of an unexpectedly large number of proton-proton collisions in which two highly energetic photons [particles of light] were produced, and the two photons could possibly have been produced in a decay … Read more

So What Is It???

So What Is It? That’s the question one hears in all the bars and on all the street corners and on every Twitter feed and in the whispering of the wind. Everybody wants to know. That bump seen on the ATLAS and CMS two-photon plots! What… IS… it…?

The two-photon results from ATLAS (top) and CMS (bottom) aligned, so that the 600, 700 and 800 GeV locations (blue vertical lines) line up almost perfectly. The peaks in the two data sets are in about the same location. ATLAS’s is larger and also wider. Click here for more commentary.

Well, to be honest, probably it’s just that: a bump on a plot. But just in case it’s not — just in case it really is the sign of a new particle in Large Hadron Collider [LHC] data — let me (start to) address the question.

First: what it isn’t. It can’t just be a second Higgs particle (a heavier version of the one found in 2012) that is just appended to the known particles, with no other particles added in.  

Read more

Neutrinos From That Recent Gamma-Ray Burst?

[NOTE ADDED: A reader forwarded a message that IceCube did not see any neutrinos with energies above 1 TeV = 1000 GeV from this GRB. Maybe this is not quite the final word (there would still be sensitivity, with some effort, to neutrinos in the 100 GeV – 1000 GeV range) but clearly the neutrino signal isn’t striking, and it is probably not there at all.  But as I’ve suggested below, even a non-observation might have significant implications for the science; the question is, how many neutrinos would the standard speculations about how GRB’s work have led you to expect at IceCube?  If a reader can provide that info, I’d appreciate that.]

The very recent report of a powerful and long-lived gamma-ray burst (GRB), and questions and remarks by my readers (thank you!), have motivated me, both as a scientist and a blogger, to try to understand whether we should have observed neutrinos from this GRB. This is forcing me to catch up on the related subjects of GRB’s, searches for high-energy neutrinos, and the highest-energy cosmic rays. I’m certainly not caught up yet; there are decades of research out there, and I’m quite far behind on developments over the past three or four years. But here are some of the basics that I believe I understand. Still, be cautious with the content of this post, both because I’m not an expert and because this is a very active area of research in which some fraction of the more speculative stuff will surely turn out to be wrong.   I will try to refine this post with a more detailed and corrected article sometime later, perhaps once we know whether neutrinos from this GRB were or were not observed.

GRBs that last more than a few seconds are widely believed to be associated with an exceptional form of Type II (or “core-collapse”) supernova, though this is not known for certain. In these types of GRBs, there are (at least) two sources of photons (everything from gamma-rays to visible light to radio waves) and two sources of neutrinos. It is important not to confuse the different sources!

Read more

Review of the Higgs-to-2-Photon Data

Since it’s been the main news story of the last week, perhaps it would be useful to do a quick summary of what the CMS and ATLAS experiments at the Large Hadron Collider [LHC] have been saying, over the past fifteen months, about their search for the process in which a Higgs particle is produced … Read more

Quantum Physics Is Very Real

Just ask the Nobel Prize committee: is quantum physics some sort of speculative new science? (A smart educated woman asked me, just a week ago, `What do you think about that quantum physics stuff?’, as though it were in the same category as theories of consciousness, speculations about the origin of life, and string theory.) … Read more

%d bloggers like this: