Long Live LLPs!

Particle physics news today… I’ve been spending my mornings this week at the 11th Long-Lived Particle Workshop, a Zoom-based gathering of experts on the subject.  A “long-lived particle” (LLP), in this context, is either a detectable particle that might exist forever, or a particle that, after traveling a macroscopic, measurable distance — something between 0.1 … Read more

LHCb experiment finds another case of CP violation in nature

The LHCb experiment at the Large Hadron Collider is dedicated mainly to the study of mesons [objects made from a quark of one type, an anti-quark of another type, plus many other particles] that contain bottom quarks (hence the `b’ in the name).  But it also can be used to study many other things, including … Read more

A Hidden Gem At An Old Experiment?

This summer there was a blog post from   claiming that “The LHC `nightmare scenario’ has come true” — implying that the Large Hadron Collider [LHC] has found nothing but a Standard Model Higgs particle (the simplest possible type), and will find nothing more of great importance. With all due respect for the considerable intelligence and technical ability of the author of that post, I could not disagree more; not only are we not in a nightmare, it isn’t even night-time yet, and hardly time for sleep or even daydreaming. There’s a tremendous amount of work to do, and there may be many hidden discoveries yet to be made, lurking in existing LHC data.  Or elsewhere.

I can defend this claim (and have done so as recently as this month; here are my slides). But there’s evidence from another quarter that it is far too early for such pessimism.  It has appeared in a new paper (a preprint, so not yet peer-reviewed) by an experimentalist named Arno Heister, who is evaluating 20-year old data from the experiment known as ALEPH.

In the early 1990s the Large Electron-Positron (LEP) collider at CERN, in the same tunnel that now houses the LHC, produced nearly 4 million Z particles at the center of ALEPH; the Z’s decayed immediately into other particles, and ALEPH was used to observe those decays.  Of course the data was studied in great detail, and you might think there couldn’t possibly be anything still left to find in that data, after over 20 years. But a hidden gem wouldn’t surprise those of us who have worked in this subject for a long time — especially those of us who have worked on hidden valleys. (Hidden Valleys are theories with a set of new forces and low-mass particles, which, because they aren’t affected by the known forces excepting gravity, interact very weakly with the known particles.  They are also often called “dark sectors” if they have something to do with dark matter.)

For some reason most experimenters in particle physics don’t tend to look for things just because they can; they stick to signals that theorists have already predicted. Since hidden valleys only hit the market in a 2006 paper I wrote with then-student Kathryn Zurek, long after the experimenters at ALEPH had moved on to other experiments, nobody went back to look in ALEPH or other LEP data for hidden valley phenomena (with one exception.) I didn’t expect anyone to ever do so; it’s a lot of work to dig up and recommission old computer files.

This wouldn’t have been a problem if the big LHC experiments (ATLAS, CMS and LHCb) had looked extensively for the sorts of particles expected in hidden valleys. ATLAS and CMS especially have many advantages; for instance, the LHC has made over a hundred times more Z particles than LEP ever did. But despite specific proposals for what to look for (and a decade of pleading), only a few limited searches have been carried out, mostly for very long-lived particles, for particles with mass of a few GeV/c² or less, and for particles produced in unexpected Higgs decays. And that means that, yes, hidden physics could certainly still be found in old ALEPH data, and in other old experiments. Kudos to Dr. Heister for taking a look.

Read more

Visiting the Host Lab of the Large Hadron Collider

Greetings from Geneva, and CERN, the laboratory that hosts the Large Hadron Collider [LHC], where the Higgs particle was found by the physicists at the ATLAS and CMS experiments. Between jet lag, preparing a talk for Wednesday, and talking to many experimental and theoretical particle physicists from morning til night, it will be a pretty exhausting week. … Read more

Did the LHC Just Rule Out String Theory?!

Over the weekend, someone said to me, breathlessly, that they’d read that “Results from the Large Hadron Collider [LHC] have blown string theory out of the water.”

Good Heavens! I replied. Who fed you that line of rubbish?!

Well, I’m not sure how this silliness got started, but it’s completely wrong. Just in case some of you or your friends have heard the same thing, let me explain why it’s wrong.

First, a distinction — one that is rarely made, especially by the more rabid bloggers, both those who are string lovers and those that are string haters. [Both types mystify me.] String theory has several applications, and you need to keep them straight. Let me mention two.

  1. Application number 1: this is the one you’ve heard about. String theory is a candidate (and only a candidate) for a “theory of everything” — a silly term, if you ask me, for what it really means is “a theory of all of nature’s particles, forces and space-time”. It’s not a theory of genetics or a theory of cooking or a theory of how to write a good blog post. But it’s still a pretty cool thing. This is the theory (i.e. a set of consistent equations and methods that describes relativistic quantum strings) that’s supposed to explain quantum gravity and all of particle physics, and if it succeeded, that would be fantastic.
  2. Application number 2: String theory can serve as a tool. You can use its mathematics, and/or the physical insights that you can gain by thinking about and calculating how strings behave, to solve or partially solve problems in other subjects. (Here’s an example.) These subjects include quantum field theory and advanced mathematics, and if you work in these areas, you may really not care much about application number 1. Even if application number 1 were ruled out by data, we’d still continue to use string theory as a tool. Consider this: if you grew up learning that a hammer was a religious idol to be worshipped, and later you decided you didn’t believe that anymore, would you throw out all your hammers? No. They’re still useful even if you don’t worship them.

BUT: today we are talking about Application Number 1: string theory as a candidate theory of all particles, etc.

Read more

Some Weird Twists and Turns

In my last post, I promised you some comments on a couple of other news stories you may have seen.  Promise kept! see below.

But before I go there, I should mention (after questions from readers) an important distinction.  Wednesday’s post was about the simple process by which a Bs meson (a hadron containing a bottom quark and a down[typo] strange anti-quark, or vice versa, along with the usual crowd of gluons and quark/antiquark pairs) decays to a muon and an anti-muon.  The data currently shows nothing out of the ordinary there.  This is not to be confused with another story, loosely related but with crucially different details. There are some apparent discrepancies (as much as 3.7 standard deviations, but only 2.8 after accounting for the look-elsewhere effect) cropping up in details of the intricate process by which a Bd meson (a hadron containing a bottom quark and a down antiquark, or vice versa, plus the usual crowd) decays to a muon, an anti-muon, and a spin-one Kaon (a hadron containing a strange quark and a down anti-quark, or vice versa, plus the usual crowd). The measurements made by the LHCb experiment at the Large Hadron Collider disagree, in some but not all features, with the (technically difficult) predictions made using the Standard Model (the equations used to describe the known particles and forces.)

Don't confuse these two processes!  (Top) The process B_s --> muon + anti-muon, covered in Wednesday's post, agrees with Standard Model predictions.   (Bottom) The process B_d --> muon + anti-muon + K* is claimed to deviate by nearly 3 standard deviations from the Standard Model, but (as far as I am aware) the prediction and associated claim has not yet been verified by multiple groups of people, nor has the measurement been repeated.
Don’t confuse these two processes! (Top) The process B_s –> muon + anti-muon, covered in Wednesday’s post, agrees with Standard Model predictions. (Bottom) The process B_d –> muon + anti-muon + K* is claimed to deviate by nearly 3 standard deviations from the Standard Model, but (as far as I am aware) the prediction and associated claim has not yet been verified by multiple groups of people, nor has the measurement been repeated.

A few theorists have even gone so far as to claim this discrepancy is clearly a new phenomenon — the end of the Standard Model’s hegemony — and have gotten some press people to write (very poorly and inaccurately) about their claim.  Well, aside from the fact that every year we see several 3 standard deviation discrepancies turn out to be nothing, let’s remember to be cautious when a few scientists try to convince journalists before they’ve convinced their colleagues… (remember this example that went nowhere? …) And in this case we have them serving as judge and jury as well as press office: these same theorists did the calculation which disagrees with the data.  So maybe the Standard Model is wrong, or maybe their calculation is wrong.  In any case, you certainly musn’t believe the news article as currently written, because it has so many misleading statements and overstatements as to be completely beyond repair. [For one thing, it’s a case study in how to misuse the word “prove”.] I’ll try to get you the real story, but I have to study the data and the various Standard Model predictions more carefully first before I can do that with complete confidence.

Ok, back to the promised comments: on twists and turns for neutrinos and for muons…  

Read more

A Couple of Rare Events

Did you know that another name for Minneapolis, Minnesota is “Snowmass”?  Just ask a large number of my colleagues, who are in the midst of a once-every-few-years exercise aimed at figuring out what should be the direction of the U.S. particle physics program.  I quote:

  • The American Physical Society’s Division of Particles and Fields is pursuing a long-term planning exercise for the high-energy physics community. Its goal is to develop the community’s long-term physics aspirations. Its narrative will communicate the opportunities for discovery in high-energy physics to the broader scientific community and to the government.

They are doing so in perhaps the worst of times, when political attacks on science are growing, government cuts to science research are severe, budgets to fund the research programs of particle physicists like me have been chopped by jaw-dropping amounts (think 25% or worse, from last year’s budget to this year’s — you can thank the sequester).. and all this at a moment when the data from the Large Hadron Collider and other experiments are not yet able to point us in an obvious direction for our future research program.  Intelligent particle physicists disagree on what to do next, there’s no easy way to come to consensus, and in any case Congress is likely to ignore anything we suggest.  But at least I hear Minneapolis is lovely in July and August!  This is the first Snowmass workshop that I have missed in a very long time, especially embarrassing since my Ph.D. thesis advisor is one of the conveners.  What can I say?  I wish my colleagues well…!

Meanwhile, I’d like to comment briefly on a few particle physics stories that you’ve perhaps seen in the press over recent days. I’ll cover one of them today — a measurement of a rare process which has now been officially “discovered”, though evidence for it was quite strong already last fall — and address a couple of others later in the week.  After that I’ll tell you about a couple of other stories that haven’t made the popular press…

Read more

Higgs Workshop in Princeton

Today I’m attending the first day of a short workshop of particle theorists and experimentalists at the Princeton Center for Theoretical Science, a sort of “Where are we now and where are we going?” meeting. It’s entitled “Higgs Physics After Discovery”, but discussion will surely range more widely. What, indeed, are the big questions facing … Read more

%d bloggers like this: