Tag Archives: general relativity

Earth Orbits the Sun, or Not? Why Coordinates Can’t Be Relevant to the Question.

We’ve been having some fun recently with Sun-centered and Earth-centered coordinate systems, as related to a provocative claim by certain serious scientists, most recently Berkeley professor Richard Muller. They claim that in general relativity (Einstein’s theory of gravity, the same fantastic mathematical invention which predicted black holes and gravitational waves and gravitational lensing) the statement that “The Sun Orbits the Earth” is just as true as the statement that “The Earth Orbits the Sun”… or that perhaps both statements are equally meaningless.

But, uh… sorry. All this fun with coordinates was beside the point. The truth, falsehood, or meaninglessness of “the Earth orbits the Sun” will not be answered with a choice of coordinates. Coordinates are labels. In this context, they are simply ways of labeling points in space and time. Changing how you label a system changes only how you describe that system; it does not change anything physically meaningful about that system. So rather than focusing on coordinates and how they can make things appear, we should spend some time thinking about which things do not depend on our choice of coordinates.

And so our question really needs to be this: does the statement “The Earth Orbits the Sun (and not the other way round)” have coordinate-independent meaning, and if so, is it true?

Because we are dealing with the coordinate-independence of a four-dimensional spacetime, which is not the easiest thing to think about, it’s best to build some intuition by looking at a two-dimensional spatial shape first. Let’s look at what’s coordinate-independent and coordinate-dependent about the surface of the Earth.

Continue reading

Earth Around the Sun, or Not? The Earth-Centered Coordinates You Should Worry About

We’re more than a week into a discussion of Professor Richard Muller’s claim that “According to the general theory of relativity, the Sun does orbit the Earth. And the Earth orbits the Sun. And they both orbit together around a place in between. And both the Sun and the Earth are orbiting the Moon.” Though many readers have made interesting and compelling attempts to prove the Earth orbits the Sun, none have yet been able to say why Muller is wrong.

A number of readers suggested, in one way or another, that we go far from the Sun and Earth and use the fact that out there, far from any complications, Newtonian physics should be good. From there, we can look back at the Sun and Earth, and see what’s going on in an unbiased way. Although Muller would say that you could still claim the Sun orbits the Earth by using “geocentric” coordinates centered on the Earth, these readers argued that such coordinates would not make sense in this distant, Newtonian region.

Are they correct about this?

Continue reading

In Our Galaxy’s Center, a Tiny Monster

It’s far from a perfect image. [Note added: if you need an introduction to what images like this actually represent (they aren’t photographs of black holes, which are, after all, black…), start with this.]

EHT’s blurry time-averaged image of the ring of material surrounding the black hole at the center of our galaxy

It’s blurred out in space by imperfections in the telescopic array that is the “Event Horizon Telescope” (EHT) and by dust between us and our galaxy’s center. It’s blurred out in time by the fact that the glowing material around the black hole changes appreciably by the hour, while the EHT’s effective exposure time is a day. There are bright spots in the image that may just be artifacts of exactly where the telescopes are located that are combined together to make up the EHT. The details of the reconstructed image depend on exactly what assumptions are made.

At best, it shows us just a thick ring of radio waves emitted over a day by an ever-changing thick disk of matter around a black hole.

But it’s our galaxy’s black hole. And it’s just the first image. There will be many more to come, sharper and more detailed. Movies will follow. A decade or two from now, what we have been shown today will look quaint.

We already knew the mass of this black hole from other measurements, so there was a prediction for the size of the ring to within twenty percent or so. The prediction was verified today, a basic test of Einstein’s gravity equations. Moreover, EHT’s results now provide some indications that the black hole spins (as expected). And (by pure luck) its spin axis points, very roughly, toward Earth (much like M87’s black hole, whose image was provided by EHT in 2019.)

We can explore these and other details in coming days, and there’s much more to learn in the coming years. But for now, let’s appreciate the picture for what it is. It is an achievement that history will always remember.

Black Hole Announcement Expected Thursday

In 2019, the first image of the surroundings of a black hole was produced, to great fanfare, by the astronomers at the Event Horizon Telescope (EHT). The black hole in question was the enormous one at the center of the galaxy M87.

The “image” of the surroundings of a black hole in galaxy M87. What does it actually show? It is most likely an image (in radio waves) of an “accretion disk” of material around the black hole, its radio emissions somewhat distorted by the warped geometry around the black hole.

At the time, there was also hope that the EHT would produce an image of the region around the black hole at the center of our own galaxy, the Milky Way. That black hole is thousands of times smaller, but also thousands of times closer, than the one in M87, and so appears about the same size on the sky (just as the Moon and Sun appear the same size, despite the Sun being much further away.)

However, the measurements of the Milky Way’s black hole proved somewhat more challenging, precisely because it is smaller. EHT takes about a day to gather the information needed for an image. M87’s black hole is so large that it takes days and weeks for it to change substantially — even light takes many days to cross from one side of the accretion disk to the other — so EHT’s image is like a short-exposure photo and the image of M87 is relatively clear. But the Milky Way’s galaxy’s black hole can change on the times scale of minutes and hours, so EHT is making a long-exposure image, somewhat like taking a 1-second exposure of a tree on a windy day. Things get blurred out, and it can be difficult to determine the true shape of what was captured in the image.

Apparently, the EHT scientists have now met these challenges, at least in part. We will learn new things about our own galaxy’s black hole on Thursday morning; links to the press conferences are here.

In preparation for Thursday, you might find my non-expert’s guide to a black hole “silhouette” useful. This was written just before the 2019 announcement, when we didn’t yet know what EHT’s first image would show. The title is a double-entendre, because I myself wasn’t entirely expert yet when I wrote it. The vast majority of it, however, is correct, so I still recommend it if you want to be prepared for Thursday’s presentation.

The only thing that’s not correct in the guide (and the offending sections are clearly marked as such) are the statements about the “photon ring”. It took me until my third follow-up post, two months later, to get it straight; that post is accurate, but it is long and very detailed. Most readers probably won’t want to go into that much detail, so what I’ll do here is summarize the correct parts of what I wrote in the weeks following the announcement, repeating a few of the figures that I made at the time, and then tell you about a couple of new things that have been learned since then about M87’s black hole. Hopefully you’ll find this both interesting on its own and useful for Thursday.

Continue reading

Is it Meaningful to Say that Earth Goes Round the Sun, or Not? (And Why Is This So Hard…?)

Is the statement “The Sun Orbits the Earth” false? Not according to professor Richard Muller of the University of California, Berkeley, as I discussed yesterday. Muller argues that Einstein’s theory of general relativity implies that you can view the Sun as orbiting the Earth if you like, or that both the Sun and Earth orbit Venus, or a random point in space, or anything else for that matter. Meanwhile, every science textbook in our kids’ classrooms says that “The Earth Orbits the Sun“. But for all of our discussions yesterday on this subject, we did not yet collectively come to any conclusions as to whether Muller is right or wrong. And we can’t hope to find evidence that the Earth orbits the Sun if the reverse is equally true!

When we’re trying to figure out whether a confusing statement is really true or not, we have to speak precisely. Up to this stage, I haven’t been careful enough, and in this post, I’m going to try to improve upon that. There are a few small but significant points of clarification to make first. Then we’ll look in detail at what it means to “change coordinates” in such a way that would put the Sun in orbit around the Earth, instead of the other way round.

Continue reading

Sun Around the Earth, or Earth Around the Sun?  Did Einstein Say “It’s all the same”?

We’re all taught in school that the Earth goes round the Sun.  But if you look around on the internet, you will find websites that say something quite different. There you will find the argument that Einstein’s great insights imply otherwise — that in fact the statements “The Earth goes round the Sun” and “The Sun goes round the Earth” are equally true, or equally false, or equally meaningless.

Here, for example, is this statement as written in Forbes by professor Richard Muller at the University of California, Berkeley.   It opens as follows: “According to the general theory of relativity, the Sun does orbit the Earth. And the Earth orbits the Sun.”  I invite you to read the rest of it; it’s not long.

What’s his point?  In Einstein’s theory of gravity (“general relativity”), time and three-dimensional space combine together to form a four-dimensional shape, called “space-time”, which is complex and curved.  And in general relativity, you can choose whatever coordinates you want on this space-time. 

So you are perfectly free to choose a set of coordinates, according to this point of view, in which the Earth is at the center of the solar system.  In these coordinates, the Earth does not move, and the Sun goes round the Earth.  The heliocentric picture of the planets and the Sun merely represents the simplest choice of coordinates; but there’s nothing wrong with choosing something else, as you like. 

This is very much like saying that to use latitude and longitude on the Earth is just a choice. I could use whatever coordinates I want.  The equator is special in the latitude-longitude system, since it lies at latitude=0; the poles are special too, at latitude +90 degrees and -90 degrees. But I could just as well choose a coordinate system in which the equator and poles don’t look special at all.

And so, after Einstein, the whole Copernican question — “is the solar system geocentric or heliocentric?” — is a complete red herring… much ado about nothing. As Muller argues in his article, “the revolution of Copernicus was actually a revolution in finding a simpler way to depict the motion, not a more correct way.

Well? Is this true? If not, why not? Comments are open.

Celebrating 2/22/22 (or was it 22/2/22)?

I hope you all had a good Twosday. Based on what I saw on social media, yesterday was celebrated widely in many parts of the world that use Pope Gregory’s calendar. I had two sandwiches to in honor of the date, and two scoops of ice cream.

In the United States, the joy continues today, it being now 2/23/22. Though not quite as wonderful as 2/22/22 on Tuesday, it’s still another nicely symmetric number worthy of note. In fact we get a full week of this, including 2/24/22 tomorrow, 2/25/22 on Friday, and so on, concluding on 2/29/22 … uhh, (oops) I mean, 2/28/22, because 2022 is not a Leap Year. For some reason.

In other countries, where it is 23/2/22, the celebration is over for now … because without symmetry, where’s the love? Ah, but they’re just more patient. They’ll get their chance in a month, when it’s 22/3/22, a date that will go unnoticed in the USA but not in Europe.

But what, exactly, are we getting so jazzed about? After all, what is the significance of it being the 22nd or 23rd date of the second month of a year labelled 2022? Every single bit of this is arbitrary. Somebody, long ago, decided January would be the first month, making February month number 2; but it wasn’t that long ago that March was the first month, which is why September, October, November and December (7, 8, 9, and 10) have their names. It’s arbitrary that January has 31 days instead of 30; had it been given thirty, the day we call the “22nd” would have been the “23rd” of February, and our celebration would have been one day earlier. And 2022 is arbitrary two too. Other perfectly good calendars referred to yesterday by a completely different day, month and year.

This, my friends, is exactly what General Relativity (and the rest of modern physics) tells you not to do. This is about putting all of your energies and your focus on your coordinate system — on how you represent reality, instead of on reality itself. The coordinate system is arbitrary; what matters is what actually happens, not how you describe what happens using some particular way of measuring time, or space, or anything else. To get excited about the numbers that happen to appear on your measuring stick is to put surface ahead of substance, math ahead of physics, magic ahead of science. It’s as bad as getting excited about how a word is spelled, or even what word is used to represent an object; a rose by any other name.

But we humans are not designed to think this way, it seems. We cheer when we’ve driven a thousand miles, a milestone (hah) which combines the definition of mile (arbitrary) with the fascination with the number 1,000 (which only looks like an interesting number if you count with ten fingers, rather than 12 knuckles, as the Babylonians did, or eight tentacles, as certain intelligent sea creatures might do.) We get terribly excited about numbers such as 88, or 666, which similarly depend on our having chosen to count on our ten fingers. A war was ended on 11/11 at 11:00 (and one was started on 22/2/22 — coincidence?)

Celebrating birthdays is a little better. No matter what calendar you choose, or whether it even lasts a year (as, for example, in Bali), the Sun appears to move across the sky, relative to the distant stars, in a yearly cycle. When it comes back to where it was, a year has passed. If we define your age to be the number of solar cycles you’ve experienced, then that means something, no matter what calendar you prefer. Your birthday means something too as long as we define it not by the arbitrary calendar but by the position of the Sun on the day of your birth.

Similarly, the solstices that mark the days with the shortest daylight and shortest darkness, and the equinoxes that have days and nights equal in duration, are independent of how you count hours or minutes or seconds, or even days. It doesn’t matter if your day has 24 equal hours, or if you divide your daylight into 12 and your darkness into 12, as used to be the case. It doesn’t matter what time zones you may have arbitrarily chosen. If you want to mark days, you can use the time that the Sun is highest in the sky to define “noon”, and count noons. A year is just over 365 noons, no matter what your calendar. The time from solstice to solstice is about half that. But the date we call “December 25th” does not sit on a similarly fundamental foundation; it shifts when there’s a leap year, and sometimes it’s three days after the solstice and sometimes four. Many other holidays, driven by Moon cycles rather than a Sun cycle, are even less grounded in the cosmos.

Being too focused on coordinates can cause a lot of trouble. The flat maps that try to describe our spherical Earth make all sorts of things seem to be true that aren’t. They all make the shortest path between two points impossible to guess. Some wildly exaggerate Greenland’s size and minimize the entire African continent. Most of them make it difficult to imagine what travel over the north or south pole is like, because there’s a sort of “coordinate singularity” there — a single point is spread out over a whole line at the top of the map, and similarly at the bottom, which makes places that are in fact very close together seem very far apart.

A coordinate singularity of a more subtle type prevented scientists (Einstein among them) from realizing for decades that black holes, which were once called “frozen stars,” have an interior, and that you could potentially fall in. The coordinates originally in use made it seem as though time would stop for someone reaching the edge of the star. Bad coordinates can obscure reality.

Physics, and science more generally, pushes us to focus on what really happens — on events whose existence does not depend on how we describe them. It’s a lesson that we humans don’t easily learn. While it’s fine to find a little harmless and silly joy at non-events such as 22/2/22 or 2/22/22, that’s as far as it should go: anything that depends on your particular and arbitrary choice of coordinate system cannot have any fundamental meaning. It’s a lesson from Einstein himself, advising us on what not two do.