A Couple of Rare Events

Did you know that another name for Minneapolis, Minnesota is “Snowmass”?  Just ask a large number of my colleagues, who are in the midst of a once-every-few-years exercise aimed at figuring out what should be the direction of the U.S. particle physics program.  I quote:

  • The American Physical Society’s Division of Particles and Fields is pursuing a long-term planning exercise for the high-energy physics community. Its goal is to develop the community’s long-term physics aspirations. Its narrative will communicate the opportunities for discovery in high-energy physics to the broader scientific community and to the government.

They are doing so in perhaps the worst of times, when political attacks on science are growing, government cuts to science research are severe, budgets to fund the research programs of particle physicists like me have been chopped by jaw-dropping amounts (think 25% or worse, from last year’s budget to this year’s — you can thank the sequester).. and all this at a moment when the data from the Large Hadron Collider and other experiments are not yet able to point us in an obvious direction for our future research program.  Intelligent particle physicists disagree on what to do next, there’s no easy way to come to consensus, and in any case Congress is likely to ignore anything we suggest.  But at least I hear Minneapolis is lovely in July and August!  This is the first Snowmass workshop that I have missed in a very long time, especially embarrassing since my Ph.D. thesis advisor is one of the conveners.  What can I say?  I wish my colleagues well…!

Meanwhile, I’d like to comment briefly on a few particle physics stories that you’ve perhaps seen in the press over recent days. I’ll cover one of them today — a measurement of a rare process which has now been officially “discovered”, though evidence for it was quite strong already last fall — and address a couple of others later in the week.  After that I’ll tell you about a couple of other stories that haven’t made the popular press…

Read more

Creating a New Particle from the Annihilation of Two Others

[Long silence should be over for now; personal issues had to take precedence for a little while.] Back to building up articles on how the Higgs field works! As part of the necessary background, I’ve added another general article on how particles and fields interact with each other to my series on Particles and Fields … Read more

The Energy to Bind Them All

I have written a lot about energy, but I’ve put off introducing the most important type of energy again and again.  It’s the most important, because it is this type of energy that is responsible for all the structure in the universe, from galaxy clusters down to protons and everything in between.  It is the most … Read more

Professor Peskin’s Four Slogans: Advice for the 2012 LHC

On Monday, during the concluding session of the SEARCH Workshop on Large Hadron Collider [LHC] physics (see also here for a second post), and at the start of the panel discussion involving a group of six theorists, Michael Peskin, professor of theoretical particle physics at the Stanford Linear Accelerator Center [and my Ph.D. advisor] opened the … Read more

Why a Lightweight Higgs is a Sensitive Creature — Part 2

[Note added:  It is official — as expected, at this year’s Chamonix workshop, where the Large Hadron Collider’s [LHC’s] future is planned out each year, it was decided that the LHC’s energy will be increased by 14% next year (from 3.5 TeV energy per proton and 7 TeV energy per collision in 2010-2011 to 4 … Read more

Why A Lightweight Higgs Particle is a Sensitive Creature — Part 1

In a post from January 27, 2012, concerning the possibility that the Higgs particle might have exotic decays (i.e. decays of a sort not expected if the Higgs is of the “ simplest [i.e. “Standard Model”] type), I described a lightweight Higgs particle as a sensitive creature.  We might think of it as the canary in the accelerator tunnel, easily affected by new … Read more

Exotic Decays of the Higgs: A High Priority for 2012

2012 may well turn out to be The Year of The Higgs.  Right now we have very little knowledge about this particle, but that may change dramatically over the year. As I described in my previous post, we’re coming toward the end of Phase 1 of the Higgs search (where the ATLAS and CMS experiments at the Large Hadron Collider [LHC] search for the simplest possible form of the Higgs particle, the Standard Model Higgs, or SM Higgs for short.) And we’re also starting up Phase 2 of the Higgs search. As discussed in my Cosmic Variance guest post, and in more detail in my most recent post, if a particle resembling the SM Higgs is found, Phase 2 involves checking its details and determining as well as possible whether it is or isn’t precisely what is predicted by the Standard Model. If no such particle is found, Phase 2 involves searching widely for the many other types of Higgs particles that nature might or might not possess. Fortunately, despite these apparently divergent aims, the two possible branches of Phase 2 involve asking some of the same experimental questions (see Figure 3 of the most recent post), and so we can start on Phase 2 before even finishing Phase 1. And that is happening now.

One of the things that has to be done in Phase 2 is to search for decays of the Higgs particle that are not among the decays predicted to occur in the Standard Model.  [“Decay” = “a disintegration of one particle into two or more”. Click here for an introduction.]  Such “exotic” decays are thought of as particularly plausible, because a lightweight Higgs (below about 150 GeV/c2 or so) is a very sensitive creature. It is very easy for new particles and/or forces to alter the Higgs’ properties, perhaps causing changes in how (or how often) it is produced, and to what (and with what probability) it may decay.  As shown in a large number of papers, written by  quite a variety of particle physics theorists, there are many, many types of possible exotic decays, and they can arise for many reasons.  If you’re curious what kind of exotic decays might occur, I gave a few examples in my now somewhat out-of-date analysis of what the summer’s Higgs searches imply. The basic logic of how unusual Higgs decays might arise is still correct in the cases described, but there are many, many more possibilities too. I’ll have to write a long article about the options in the coming month or so.

Read more

The Higgs particle decays; so do most particles. Why?

Here’s an article intended to give a layperson a sense for why so many types of particles — most of them, in fact — decay away almost instantly, forcing us to discover them through various types of trickery.   This is relevant in the search for the Higgs particle, which decays away far too quickly to … Read more

%d