Tag Archives: auroras

Ongoing Chance of Northern (or Southern) Lights

As forecast, the cloud of particles from Friday’s solar flare (the “coronal mass emission”, or “CME”) arrived at our planet a few hours after my last post, early in the morning New York time. If you’d like to know how I knew that it had reached Earth, and how I know what’s going on now, scroll down to the end of this post and I’ll show you the data I was following, which is publicly available at all times.

So far the resulting auroras have stayed fairly far north, and so I haven’t seen any — though they were apparently seen last night in Washington and Wyoming, and presumably easily seen in Canada and Alaska. [Caution: sometimes when people say they’ve been “seen”, they don’t quite mean that; I often see lovely photos of aurora that were only visible to a medium-exposure camera shot, not to the naked eye.]  Or rather, I should say that the auroras have stayed fairly close to the Earth’s poles; they were also seen in New Zealand.

Russia and Europe have a good opportunity this evening. As for the U.S.? The storm in the Earth’s magnetic field is still going on, so tonight is still a definite possibility for northern states. Keep an eye out! Look for what is usually a white or green-hued glow, often in swathes or in stripes pointing up from the northern horizon, or even overhead if you’re lucky.  The stripes can move around quite rapidly.

Now, here’s how I knew all this.  I’m no expert on auroras; that’s not my scientific field at all.   But the U.S. Space Weather Prediction Center at the National Oceanic and Atmospheric Administration, which needs to monitor conditions in space in case they should threaten civilian and military satellites or even installations on the ground, provides a wonderful website with lots of relevant data.

The first image on the site provides the space weather overview; a screenshot from the present is shown below, with my annotations.  The upper graph indicates a blast of x-rays (a form of light not visible to the human eye) which is generated when the solar flare, the magnetically-driven explosion on the sun, first occurs.  Then the slower cloud of particles (protons, electrons, and other atomic nuclei, all of which have mass and therefore can’t travel at light’s speed) takes a couple of days to reach Earth.  It’s arrival is shown by the sudden jump in the middle graph.  Finally, the lower graph measures how active the Earth’s magnetic field is.  The only problem with that plot is it tends to be three hours out of date, so beware of that! A “Kp index” of 5 shows significant activity; 6 means that auroras are likely to be moving away from the poles, and 7 or 8 mean that the chances in a place like the north half of the United States are pretty good.  So far, 6 has been the maximum generated by the current flare, but things can fluctuate a little, so 6 or 7 might occur tonight.  Keep an eye on that lower plot; if it drops back down to 4, forget it, but it it’s up at 7, take a look for sure!

SpaceWxDataJuly162017

Also on the site is data from the ACE satellite.  This satellite sits 950 thousand miles [1.5 million kilometers] from Earth, between Earth and the Sun, which is 93 million miles [150 million kilometers] away.  At that vantage point, it gives us (and our other satellites) a little early warning, of up to an hour, before the cloud of slow particles from a solar flare arrives.  That provides enough lead-time to turn off critical equipment that might otherwise be damaged.  And you can see, in the plot below, how at a certain time in the last twenty-four hours the readings from the satellite, which had been tepid before, suddenly started fluctuating wildly.  That was the signal that the flare had struck the satellite, and would arrive shortly at our location.

ACEDataJuly162017.png

It’s a wonderful feature of the information revolution that you can get all this scientific data yourself, and not wait around hoping for a reporter or blogger to process it for you.  None of this was available when I was a child, and I missed many a sky show.  A big thank you to NOAA, and to the U.S. taxpayers who make their work possible.

 

 

Why did so few people see Auroras on Friday night?

Why did so few people see auroras on Friday night, after all the media hype? You can see one of two reasons in the data. As I explained in my last post, you can read what happened in the data shown in the Satellite Environment Plot from this website (warning — they’re going to make new version of the website soon, so you might have to modify this info a bit.) Here’s what the plot looked like Sunday morning.

What the "Satellite Environment Plot" on swpc.noaa.gov looked like on Sunday.  Friday is at left; time shown is "Universal" time; New York time is 4 hours later. There were two storms, shown as the red bars in the Kp index plot; one occurred very early Friday morning and one later on Friday.  You can see the start of the second storm in the "GOES Hp" plot, where the magnetic field goes wild very suddenly.  The storm was subsiding by midnight universal time, so it was mostly over by midnight New York time.

What the “Satellite Environment Plot” on swpc.noaa.gov looked like on Sunday. Friday is at left.  Time shown is “Universal” time (UTC); New York time is 4 hours later at this time of year. There were two storms, shown as the red bars in the Kp index chart (fourth line); one occurred very early Friday morning and one later on Friday. You can see the start of the second storm in the “GOES Hp” chart (third line), where the magnetic field goes wild very suddenly. The storm was subsiding by midnight Universal time, so it was mostly over by midnight New York time.

What the figure shows is that after a first geomagnetic storm very early Friday, a strong geomagnetic storm started (as shown by the sharp jump in the GOES Hp chart) later on Friday, a little after noon New York time [“UTC” is currently New York + 4/5 hours], and that it was short — mostly over before midnight. Those of you out west never had a chance; it was all over before the sun set. Only people in far western Europe had good timing. Whatever the media was saying about later Friday night and Saturday night was somewhere between uninformed and out of date.  Your best bet was to be looking at this chart, which would have shown you that (despite predictions, which for auroras are always quite uncertain) there was nothing going on after Friday midnight New York time.

But the second reason is something that the figure doesn’t show. Even though this was a strong geomagnetic storm (the Kp index reached 7, the strongest in quite some time), the auroras didn’t migrate particularly far south. They were seen in the northern skies of Maine, Vermont and New Hampshire, but not (as far as I know) in Massachusetts. Certainly I didn’t see them. That just goes to show you (AccuWeather, and other media, are you listening?) that predicting the precise timing and extent of auroras is educated guesswork, and will remain so until current knowledge, methods and information are enhanced. One simply can’t know for sure how far south the auroras will extend, even if the impact on the geomagnetic field is strong.

For those who did see the auroras on Friday night, it was quite a sight. And for the rest of us who didn’t see them this time, there’s no reason for us to give up. Solar maximum is not over, and even though this is a rather weak sunspot cycle, the chances for more auroras over the next year or so are still pretty good.

Finally, a lesson for those who went out and stared at the sky for hours after the storm was long over — get your scientific information from the source!  There’s no need, in the modern world, to rely on out-of-date media reports.

Auroras — Quantum Physics in the Sky — Tonight?

Maybe. If we collectively, and you personally, are lucky, then maybe you might see auroras — quantum physics in the sky — tonight.

Before I tell you about the science, I’m going to tell you where to get accurate information, and where not to get it; and then I’m going to give you a rough idea of what auroras are. It will be rough because it’s complicated and it would take more time than I have today, and it also will be rough because auroras are still only partly understood.

Bad Information

First though — as usual, do NOT get your information from the mainstream media, or even the media that ought to be scientifically literate but isn’t. I’ve seen a ton of misinformation already about timing, location, and where to look. For instance, here’s a map from AccuWeather, telling you who is likely to be able to see the auroras.

Don't believe this map by AccuWeather.  Oh, sure, they know something about clouds.  But auroras, not much.

Don’t believe this map by AccuWeather. Oh, sure, they know something about clouds. But auroras, not much.

See that line below which it says “not visible”? This implies that there’s a nice sharp geographical line between those who can’t possibly see it and those who will definitely see it if the sky is clear. Nothing could be further than the truth. No one knows where that line will lie tonight, and besides, it won’t be a nice smooth curve. There could be auroras visible in New Mexico, and none in Maine… not because it’s cloudy, but because the start time of the aurora can’t be predicted, and because its strength and location will change over time. If you’re north of that line, you may see nothing, and if you’re south of it you still might see something.  (Accuweather also says that you’ll see it first in the northeast and then in the midwest.  Not necessarily.  It may become visible across the U.S. all at the same time.  Or it may be seen out west but not in the east, or vice versa.)

Auroras aren’t like solar or lunar eclipses, absolutely predictable as to when they’ll happen and who can see them. They aren’t even like comets, which behave unpredictably but at least have predictable orbits. (Remember Comet ISON? It arrived exactly when expected, but evaporated and disintegrated under the Sun’s intense stare.) Auroras are more like weather — and predictions of auroras are more like predictions of rain, only in some ways worse. An aurora is a dynamic, ever-changing phenomenon, and to predict where and when it can be seen is not much more than educated guesswork. No prediction of an aurora sighting is EVER a guarantee. Nor is the absence of an aurora prediction a guarantee one can’t be seen; occasionally they appear unexpectedly.  That said, the best chance of seeing one further away from the poles than usual is a couple of days after a major solar flare — and we had one a couple of days ago.

Good Information and How to Use it

If you want accurate information about auroras, you want to get it from the Space Weather Prediction Center, click here for their main webpage. Look at the colorful graph on the lower left of that webpage, the “Satellite Environment Plot”. Here’s an example of that plot taken from earlier today:

The "Satellite Environment Plot" from earlier today; focus your attention on the two lower charts, the one with the red and blue wiggly lines (GOES Hp) and on the one with the bars (Kp Index).  How to use them is explained in the text.

The “Satellite Environment Plot” from earlier today; focus your attention on the two lower charts, the one with the red and blue wiggly lines (GOES Hp) and on the one with the bars (Kp Index). How to use them is explained in the text.

There’s a LOT of data on that plot, but for lack of time let me cut to the chase. The most important information is on the bottom two charts. Continue reading

Northern Lights Tonight?

[UPDATE, midnight New York time: the cloud of particles from the solar flare arrived a few hours ago, but it didn’t impact the earth’s magnetic field quite as hard as the best-guess forecast. (Remember the probability of a geomagnetic storm was only 60%; i.e. the probability of no storm was 40%.) Right now, the auroras are likely visible in Canada but probably not in the US. This could change, but don’t get your hopes up too high; we may have to wait for the next solar flare.]

I’ve been sidelined with computer troubles and non-science activities, so first, a belated thanks to everyone who left a thoughtful comment after Monday’s post and question about communicating science to the public.  I appreciate hearing your views, especially from readers with a diversity of backgrounds!

Now, many of you may have heard that there is a forecast of northern (and southern) lights, also known as auroras, tonight.  What you’ve heard is correct: today’s NOAA space-weather forecast, from  http://www.swpc.noaa.gov/forecast.html,  says

VI.  Geomagnetic Activity Probabilities 13 Apr-15 Apr
A.  Middle Latitudes
Active                30/30/15
Minor Storm           35/45/05
Major-severe storm    10/15/01
B.  High Latitudes
Active                10/15/15
Minor Storm           20/25/20
Major-severe storm    60/35/20

i.e. it shows that even in mid-latitudes (meaning northern US and southern Canada, and northern Europe, along perhaps with parts of Australia and New Zealand [?]) they are estimating a 35%-45% probability of a minor `geomagnetic storm’ tonight, with a 10-15% probability of a major storm… and a geomagnetic storm, which literally means a lot of activity in the earth’s magnetic field, generally leads to auroras further away from the north and south pole than usual. Continue reading