Category Archives: Public Outreach

Wednesday: Sean Carroll & I Interviewed by Alan Boyle

On Wednesday February 6th, at 9 pm Eastern/6 pm Pacific time, Sean Carroll and I will be interviewed by Alan Boyle on “Virtually Speaking Science”.   The link where you can listen in (in real time or at your leisure) is

What is “Virtually Speaking Science“?  It is an online radio program that presents, according to its website:

  • Informal conversations hosted by science writers Alan Boyle, Tom Levenson and Jennifer Ouellette, who explore the explore the often-volatile landscape of science, politics and policy, the history and economics of science, science deniers and its relationship to democracy, and the role of women in the sciences.

Sean Carroll is a Caltech physicist, astrophysicist, writer and speaker, one of the founders of the blog Cosmic Variance, who recently completed an excellent popular book (which I highly recommend) on the Higgs particle, entitled “The Particle at the End of the Universe“.  Our interviewer Alan Boyle is a noted science writer, author of the book “The Case for Pluto“, winner of many awards, and currently NBC News Digital’s science editor [at the blog  “Cosmic Log“].

I was interviewed on Virtually Speaking Science once before, by Tom Levenson, about the Large Hadron Collider (here’s the link).  Also, my public talk “The Quest for the Higgs Particle” is posted in their website (here’s the link to the audio and to the slides).


My Version of the TIME Higgs Paragraph

A few commenters have complained that I’m too hard on science journalists, who have a tough job; it’s hard to explain difficult concepts in a few words.  To paraphrase them: “if it’s so easy, you do it!  Rather than merely complain about the erroneous TIME magazine paragraph on the Higgs boson, write your own explanation of the Higgs particle for readers of TIME magazine.”

Well, first of all, I have never once suggested science journalism is easy; far from it!  A big part of the challenge is to find ways to explain complex ideas that are simple, compelling and accurate (and not two out of three.)

Second, I have written an article suitable for non-expert readers; it’s just over a page long, and is called Why the Higgs Particle Matters.  It’s gotten about 30,000 hits; some people seem to really like it, so try it out on your friends.

And third, for those who point out that the above-mentioned article is much longer than a paragraph, and that I shouldn’t be so critical of the TIME journalist who had to fit so much into a such a small space, here is my version of the TIME paragraph: six sentences rather than five, but scarcely longer.  I have borrowed the style and the feel of the TIME journalist’s writing, and I have removed some inaccurate content and replaced it with different accurate content.

  • Take a moment to thank the Higgs field for all the work it does, because without it, you’d explode.  This field pervades the universe and supplies electrons (and many other particles) with their mass, thus preventing ordinary matter from disintegrating into a ghastly vapor.   It was in the 1960s that British physicist Peter Higgs (and a few others) first posited the existence of this field.  But it was not until last summer that two huge teams of researchers at Europe’s Large Hadron Collider at last sealed the deal by discovering a new particle — the Higgs boson — which confirms the Higgs field exists.  You see, the particle is a consequence of the field wiggling a bit; and just as sound, a ripple in the air, can’t be heard unless there’s air in the room, there wouldn’t be Higgs particles to discover unless Higgs and friends were right all along about their famous field.  Now the Higgs — as most particles do — decays in an instant to other particles, so it wouldn’t be able to attend the award ceremony; however, the scientists would surely be happy to appear in its stead.

Although not everything I’ve written here is 100% accurate — that would indeed be impossible in a paragraph for a wide readership — I believe none of it is fundamentally wrong (but my colleagues should feel free to complain!)  Yes, science journalism is difficult; but is it really inevitable that profound errors concerning the science must appear in articles for the public?

TIME for a Little Soul-Searching

Yes, it was funny, as I hope you enjoyed in my post from Saturday; but really, when we step back and look at it, something is dreadfully wrong and quite sad.  Somehow TIME magazine, fairly reputable on the whole, in the process of reporting the nomination of a particle (the Higgs Boson; here’s my FAQ about it and here’s my layperson’s explanation of why it is important) as a Person (?) of the Year, explained the nature of this particle with a disastrous paragraph of five astoundingly erroneous sentences.   Treating this as a “teaching moment” (yes, always the professor — can’t help myself) I want to go through those sentences carefully and fix them, not to string up or further embarrass the journalist but to be useful to my readers.  So that’s coming in a moment.

But first, a lament.

Who’s at fault here, and how did this happen?  There’s plenty of blame to go around; some lies with the journalist, who would have been wise to run his prose past a science journalist buddy; some lies with the editors, who didn’t do basic fact checking, even of the non-science issues; some lies with a public that (broadly) doesn’t generally care enough about science for editors to make it a priority to have accurate reporting on the subject.  But there’s a history here.  How did it happen that we ended up a technological society, relying heavily on the discoveries of modern physics and other sciences over the last century, and yet we have a public that is at once confused by, suspicious of, bored by, and unfamiliar with science?   I think a lot of the blame also lies with scientists, who collectively over generations have failed to communicate both what we do and why it’s important — and why it’s important for journalists not to misrepresent it. Continue reading

Colloquia Here and There

This Wednesday I was visiting the University of Massachusetts, in the currently colorful town of Amherst, where I gave a colloquium (an hour-long talk aimed at a physics department’s undergraduate majors, graduate students and faculty who are not themselves experts in particle physics) entitled The Quest for the Higgs Boson.  It’s similar to the one I gave two weeks ago at the University of Toronto, which is available on-line now. There’s audio and there are slides, but no video, so I’m afraid you’ll have to figure out on your own how the slides and audio fit together; but I think it should be fairly obvious.

If, however, you’re not a physicist or physics student, but you have been following particle physics a little bit, perhaps by reading this blog or Scientific American articles or books for laypeople by, say, Brian Greene or Lisa Randall, then you might instead want to try listening to this lecture I gave recently, which is also in the form of an audio feed plus slides.  It makes far fewer assumptions about what audience members are familiar with.  And of course there’s always my [in]famous video clips from my March 2011 public lecture on the Large Hadron Collider; a bit out of date since they were made before the new Higgs-like particle was found, but still basically covering what you need to know.

Please note these presentations are under copyright.

Two Major Steps Forward

Apologies to those who’ve been asking questions: I’ve been away from the website for a few days (family matters) and have not been able to keep up with comments.  I will try to catch up over the coming day or two.

But I do have two pieces of good news.

First, I gave a public lecture over the weekend, on-line, called “The Quest for the Higgs”, which I believe many of my readers will find at the right level.  Because of some technical difficulties with the sound recording, I didn’t immediately recommend that you listen; but those problems are now fixed and the sound is pretty good.  The audio is to be found here at BlogTalkRadio, through the Virtually Speaking Science series; on that website, there’s a link to the slides accompanying the talk, or you can just click here to get them.  [Note the slides are under copyright; please ask permission before reproducing or using ideas you find therein.] 

Second, the long-awaited final article in the series on Particles and Fields (with a little math) has arrived.

  1. Ball on a Spring (Classical)
  2. Ball on a Spring (Quantum)
  3. Waves (Classical Form)
  4. Waves (Classical Equation of Motion)
  5. Waves (Quantum)
  6. Fields
  7. Particles are Quanta (new!)

As a bonus, you can then find out what the key technical difference is between bosons and fermions (the consequences of this difference are described, without technicalities, here.)

Next month: a series of articles on How the Higgs Field Works.

What Fields Are (& a Public Talk Saturday)

To the five articles in my very-slightly-mathy series on Fields and Particles [sorry, the non-mathy series will be probably appear a couple of months from now] I have now added a 6th:

  1. Ball on a Spring (Classical)
  2. Ball on a Spring (Quantum)
  3. Waves (Classical Form)
  4. Waves (Classical Equation of Motion)
  5. Waves (Quantum)
  6. Fields (new!)
  7. Particles (coming next week)

Meanwhile, I remind you that I’m giving a talk on-line, about The Quest for the Higgs Particle. No math required there. (Saturday, September 8th, 1 p.m. New York time/10 a.m. Pacific, through the MICA Popular Talks series, held online at the Large Auditorium on StellaNova, Second Life.  You’ll need a Second Life viewer to watch it live.  Should you miss it, both the audio and the slides will be posted later for you to look at.)  And also, if you missed my colleague Sean Carroll being interviewed about his new book and the science behind the Higgs Discovery, an opportunity I recommended to you yesterday, all is not lost; you can hear it here.

Two Online Events on Higgs Discovery

My friend and colleague Sean Carroll, of the Cosmic Variance blog, who has a very good new book about the Higgs particle and its discovery, is being interviewed by Alan Boyle today as part of the Virtually Speaking Science series.  Listen live 9 pm eastern | 6 pm pacific, or later, at .  Sean is an excellent speaker and writer; highly recommended!

And I myself am giving a public lecture about the Quest for the Higgs Particle this Saturday, September 8th, 1 p.m. New York time/10 a.m. Pacific, through the MICA Popular Talks series, held online at the Large Auditorium on StellaNova, Second Life.  You’ll need a Second Life viewer to watch it live.  Should you miss it, both the audio and the slides will be posted later for you to look at.  (I gave one of these talks, on the Large Hadron Collider, back in April, but the sound quality over the web was a bit problematic; hopefully it will be better this time.)



Why Government Investment in Scientific Research Is Worthwhile

[NOTE ADDED: Unfortunately, within two months of this post, Mr. Zakaria was suspended from his job for plagiarism.  Such a spectacular lack of integrity calls into question everything he has ever written, and so I cannot anymore recommend his article, nor will he ever be quoted on this website again.]


Today I’d like to call your attention to an article by Fareed Zakaria, entitled “How government funding of science rewards U.S. taxpayers.”  (The sentiment also applies to taxpayers elsewhere, of course.) I can’t vouch for the details inside the article, but the point that Zakaria makes is one that I personally feel is very important.

When I give public talks about the fundamental research that I or my colleagues are doing, I am often asked, “what are its benefits to society?”  It’s a completely fair question, but with fundamental research it is typically far too early to know the answer; it can be many decades before the benefits, if any, become evident.  I think the best answer requires a long view — the kind of view Zakaria lays out in the article.  I often reply this way: that you should think about government investment in fundamental scientific research as similar to venture capital investments in many small startup companies; most of these efforts will fail, or will succeed with a small payout, but one or two will pay off in spectacular fashion and change the world.

And you surely want that payout to happen in a friendly country.  Zakaria  points out the worrying slope that the United States is on; though scientific breakthroughs have a big impact on the economy over the long term, funding for science is on a long-term decline (as a fraction of GDP) in the United States, while it is sharply increasing in a list of countries that include some that are not friendly to the United States.

Zakaria focuses on what is happening today in biotechnology, genetics, genomics, etc.  He also mentions the historical case of the transistor, the device that lies at the heart of our computer-based society. This last is an even nicer example if you expand your view.   The research that was done in the late years of the 19th century on the emission of light by atoms and on the electron led eventually to the equations of quantum mechanics, which in turn were essential in the development of the transistor.  No 19th century scientist could have predicted that the discovery of the electron would help put a cell phone in your pocket.

[Thanks are due to Leonid Kruglyak for bringing this article to my attention.]