For non-expert readers who want to dig a bit deeper. This is the first post of two, the second of which will appear in a day or two:

In my last post I described, for the general reader and without using anything more than elementary fractions, how we know that each type of quark comes in three “colors” — a name which refers not to something that you can see by eye, but rather to the three “versions” of strong nuclear charge. Strong nuclear charge is important because it determines the behavior of the strong nuclear force between objects, just as electric charge determines the electric forces between objects. For instance, elementary particles with no strong nuclear charge, such as electrons, W bosons and the like, aren’t affected by the strong nuclear force, just as electrically neutral elementary particles, such as neutrinos, are immune to the electric force.

But a big difference is that there’s only one form or “version” of electric charge: in the language of professional physicists, protons have +1 unit of this charge, electrons have -1 unit of it, a nucleus of helium has +2 units of it, etc. By contrast, the strong nuclear charge comes in three versions, which are sometimes referred to as “redness”, “blueness” and “greenness” (because of a vague but highly imprecise analogue with the inner workings of the human eye). These versions of the charge combine in novel ways we don’t see in the electric context, and this plays a major role in the protons and neutrons found in every atom. It’s the math that lies behind this that I want to explain today; we’ll only need a little bit of trigonometry and complex numbers, though we’ll also need some careful reasoning.

Atoms are all about a tenth of a billionth of a meter wide (give or take a factor of 2). What determines an atom’s size? This was on the minds of scientists at the turn of the 20th century. The particle called the “electron” had been discovered, but the rest of an atom was a mystery. Today we’ll look at how scientists realized that quantum physics, an idea which was still very new, plays a central role. (They did this using one of their favorite strategies: “dimensional analysis”, which I described in a recent post.)

Since atoms are electrically neutral, the small and negatively charged electrons in an atom had to be accompanied by something with the same amount of positive charge — what we now call “the nucleus”. Among many imagined visions for what atoms might be like was the 1904 model of J.J. Thompson, in which he imagined the electrons are embedded within a positively-charged sphere the size of the whole atom.

But Thompson’s former student Ernest Rutherford gradually disproved this model in 1909-1911, through experiments that showed the nucleus is tens of thousands of times smaller (in radius) than an atom, despite having most of the atom’s mass.

Once you know that electrons and atomic nuclei are both tiny, there’s an obvious question: why is an atom so much larger than either one? Here’s the logical problem”

Negatively charged particles attract positively charged ones. If the nucleus is smaller than the atom, why don’t the electrons find themselves pulled inward, thus shrinking the atom down to the size of that nucleus?

Well, the Sun and planets are tiny compared to the solar system as a whole, and gravity is an attractive force. Why aren’t the planets pulled into the Sun? It’s because they’re moving, in orbit. So perhaps the electrons are in orbit around the nucleus, much as planets orbit a star?

This analogy doesn’t work. Unlike planets, electrons orbiting a nucleus would be expected to emit ample electromagnetic waves (i.e. light, both visible and invisible), and thereby lose so much energy that they’d spiral into the nucleus in a fraction of a second.

(These statements about the radiated waves from planets and electrons can be understood with very little work, using — you guessed it — dimensional analysis! Maybe I’ll show you that in the comments if I have time.)

So there’s a fundamental problem here.

The tiny nucleus, with most of the atom’s mass, must be sitting in the middle of the atom.

If the tiny electrons aren’t moving around, they’ll just fall straight into the nucleus.

If they are moving around, they’ll radiate light and quickly spiral into the nucleus.

Either way, this would lead us to expect

R_{nucleus} = # R_{atom}

where # is not too, too far from 1. (This is the most naive of all dimensional analysis arguments: two radii in the same physical system shouldn’t be that different.) This is in contradiction to experiment, which tells us that # is about 1/100,000! So it seems dimensional analysis has failed.

Or is it we who have failed? Are we missing something, which, once included, will restore our confidence in dimensional analysis?

We are missing quantum physics, and in particular Planck’s constant h. When we include h into our dimensional analysis, a new possible size appears in our equations, and this sets the size of an atom. Details below.

In my last post I introduced you to dimensional analysis, an essential trick for theoretical physicists, and showed you how you could address and sometimes solve interesting and important problems with it while hardly doing any work. Today we’ll look at it differently, to see its historical role in Einstein’s relativity.

When we’re trying to figure out whether a confusing statement is really true or not, we have to speak precisely. Up to this stage, I haven’t been careful enough, and in this post, I’m going to try to improve upon that. There are a few small but significant points of clarification to make first. Then we’ll look in detail at what it means to “change coordinates” in such a way that would put the Sun in orbit around the Earth, instead of the other way round.

Sometimes, when you’re doing physics, you have to make a wild guess, do a little calculating, and see how things turn out.

In a recent post, you were able to see how Kepler’s law for the planets’ motions (R^{3}=T^{2} , where R the distance from a planet to the Sun in Earth-Sun distances, and T is the planet’s orbital time in Earth-years), leads to the conclusion that each planet is subject to an acceleration a toward the Sun, by an amount that follows an inverse square law

a = (2π)^{2} / R^{2}

where acceleration is measured in Earth-Sun distances and in Earth-Years.

That is, a planet at the Earth’s distance from the Sun accelerates (2π)^{2} Earth-distances per Earth-year per Earth-year, which in more familiar units works out (as we saw earlier) to about 6 millimeters per second per second. That’s slow in human terms; a car with that acceleration would take more than an hour to go from stationary to highway speeds.

What about the Moon’s acceleration as it orbits the Earth? Could it be given by exactly the same formula? No, because Kepler’s law doesn’t work for the Moon and Earth. We can see this with just a rough estimate. The time it takes the Moon to orbit the Earth is about a month, so T is roughly 1/12 Earth-years. If Kepler’s law were right, then R=T^{2/3} would be 1/5 of the Earth-Sun distance. But we convinced ourselves, using the relation between a first-quarter Moon and a half Moon, that the Moon-Earth distance is less than 1/10 othe Earth-Sun distance. So Kepler’s formula doesn’t work for the Moon around the Earth.

A Guess

But perhaps objects that are orbiting the Earth satisfy a similar law,

R^{3}=T^{2} for Earth-orbiting objects

except that now T should be measured not in years but in Moon-orbits (27.3 days, the period of the Moon’s orbit around the Earth) and R should be measured not in Earth-Sun distances but in Moon-Earth distances? That was Newton’s guess, in fact.

Newton had a problem though: the only object he knew that orbits the Earth was the Moon. How could he check if this law was true? We have an advantage, living in an age of artificial satellites, which we can use to check this Kepler-like law for Earth-orbiting objects, just the way Kepler checked it for the Sun-orbiting planets. But, still there was something else Newton knew that Kepler didn’t. Galileo had determined that all objects for which air resistance is unimportant will accelerate downward at 32 feet (9.8 meters) per second per second (which is to say that, as each second ticks by, an object’s speed will increase by 32 feet [9.8 meters] per second.) So Newton suspected that if he converted the Kepler-like law for the Moon to an acceleration, as we did for the planets last time, he could relate the acceleration of the Moon as it orbits the Earth to the acceleration of ordinary falling objects in daily life.

Kepler’s third law is so simple to state that (as shown last time) it is something that any grade school kid, armed with Copernicus’s data and a calculator, can verify. Yet it was 75 years from Copernicus’s publication til Kepler discovered this formula! Why did it take Kepler until 1618, nearly 50 years of age, to recognize such a simple relationship? Were people just dumber than high-school students back then?

Here’s a clue. We take all sorts of math for granted that didn’t exist four hundred years ago, and calculations which take an instant now could easily take an hour or even all day. (Imagine computing the cube root of 4972.64 to part-per-million accuracy by hand.) In particular, one thing that did not exist in Copernicus’ time, and not even through much of Kepler’s, was the modern notion of a logarithm.

Much of this work was done by Nicolai Copernicus himself, the most famous of those philosophers who argued for a Sun-centered universe rather than an Earth-centered universe during the millennia before modern science. He had all the ingredients we have, minus knowledge of Uranus and Neptune, and minus the clues we obtain from telescopes, which would have confirmed he was correct.

Copernicus knew, therefore, that although the planetary distances from the Sun and their cycles in the sky (which astrologers [not astronomers] have focused on for centuries) don’t seem to be related, the distances and their orbital times around the Sun are much more closely related. That’s what we saw in the last post.

Let me put these distances and times, relative to the Earth-Sun distance and the Earth year, onto a two-dimensional plot. [Here the labels are for Mercury (Me), Venus (V), Mars (Ma), Jupiter (J), Saturn (S), Uranus (U) and Neptune (N).] The first figure shows the planets out to Saturn (the ones known to Copernicus).

The second shows them out to Neptune, though it bunches up the inner planets to the point that you can’t really see them well.

You can see the planets all lie along a curve that steadily bends down and to the right.

Copernicus knew all of the numbers that go into Figure 1, with pretty moderate precision. But there’s something he didn’t recognize, which becomes obvious if we use the right trick. In the last post, we sometimes used a logarithmic axis to look at the distances and the times. Now let’s replot Figure 2 using a logarithmic axis for both the distances and the times.

Oh wow. (I’m sure that’s the equivalent of what Kepler said in 1618, when he first painstakingly calculated the equivalent of this plot.)

It looks like a straight line. Is it as straight as it looks?

And now we see three truly remarkable things about this graph:

First, the planet’s distances to the Sun and orbital times lie on a very straight line on a logarithmic plot.

Second, the slope of the line is ^{2}/_{3} (2 grid steps up for every 3 steps right) rather than, say, 7.248193 .

Third, the line goes right through the point (1,1), where the first horizontal and first vertical lines cross.

What else can we learn just with simple observations? Since the stars’ daily motion is an illusion from the Earth’s spin, and since the stars do not visibly move relative to one another, our attention is drawn next to the motion of the objects that move dramatically relative to the stars: the Sun and the planets. Exactly once each year, the Sun appears to go around the Earth, such that the stars that are overhead at midnight, and thus opposite the Sun, change slightly each day. The question of whether the Earth goes round the Sun or vice versa is one we’ll return to.

Let’s focus today on the planets (other than Earth) — the wanderers, as the classical Greeks called them. Do some of them go round the Earth? Others around the Sun? Which ones have small orbits, and which ones have big orbits? In answering these questions, we’ll start to build up a clearer picture of the “Solar System” (in which we include the Sun, the planets and their moons, as well as asteroids and comets, but not the stars of the night sky.)

The Basic Patterns

If we make the assumption (whose validity we will check later) that the planets are moving in near-circles around whatever they orbit, then it’s not hard to figure out who orbits who. For each possible type of orbit, a planet will exhibit a different pattern of sizes and phases across its “cycle“ when seen through binoculars or a small telescope. Even with the naked eye, a planet’s locations in the sky and changes in brightness during its cycle give us strong clues. Simply by looking at these patterns, we can figure out who orbits who.