Is Einstein’s Theory of General Relativity Truly Elegant?

  • Quote: . . . the Higgs field exhibits the most inelegant of the known laws governing fields and particles. There’s an amusing tendency for those who tout beauty to ignore this, as though it were an inconvenient family member, and to focus instead on Einstein’s elegant theory of gravity. Yet even that theory has its issues.
  • Endnote: Einstein’s theory of gravity is amazingly elegant as long as one ignores the puzzle of “dark energy,” which would have been easier to do had it been exactly zero, and as long as gravity is a very weak force, as its weakness leads to extremely simple equations. In string theory, Einstein’s equations become much more complex, and the elegant simplicity of the math shifts to the level of the strings themselves . . . perhaps.

I’ll expound below upon the second bullet point, hoping to draw attention to general questions concerning aesthetics in theoretical physics.

Read more

The Impossible Commentary: Newton, Gravity, and the Speed of the Moon

Additional supplementary material for the upcoming book; your comments/corrections are welcome. This entry has to do with how Newton realized that weight and mass aren’t the same thing — that the pull of Earth’s gravity depends on how far you are from the Earth’s center.

  • (Quote) Newton knew right away that if the force of gravity were as powerful out by the Moon as it is at Earth’s surface—if the Moon accelerated toward the Earth at the same rate that your dropped keys do—then motion and gravity would be wildly out of balance [and so the Moon would have fallen and crashed into the Earth.]
  • (Endnote) To avoid disaster, the Moon’s orbital speed would need to be 40 miles per second, leading it to circle Earth twice a day.

Here I’ll explain why this is true, using a little math. (If you already know something about Kepler’s laws of planetary orbits, additional relevant discussion can be found in this post from 2022.)

Read more

How to Tell that the Earth Spins

Continuing with the supplementary material for the book, from its Chapter 2. This is in reference to Galileo’s principle of relativity, a central pillar of modern science. This principle states that perfectly steady motion in a straight line is indistinguishable from no motion at all, and thus cannot be felt. This is why we don’t feel our rapid motion around the Earth and Sun; over minutes, that motion is almost steady and straight. I wrote

  • . . . Our planet rotates and roams the heavens, but our motion is nearly steady. That makes it nearly undetectable, thanks to Galileo’s principle.

To this I added a brief endnote, since the spin of the Earth can be detected, with some difficulty.

  • As pointed out by the nineteenth-century French physicist Léon Foucault, the Earth’s rotation, the least steady of our motions, is reflected in the motion of a tall pendulum. Many science museums around the world have such a “Foucault pendulum” on exhibit.

But for those who would want to know more, here’s some information about how to measure the Earth’s spin.

Read more

Beyond the Book (and What the Greeks Knew About the Earth)

Since the upcoming book is basically done, it’s time for me to launch the next phase of the project — the supplementary material, which will be placed here, on this website.

Any science book has to leave out many details of the subjects it covers, and omit many important topics. While my book has endnotes that help flesh out the main text, I know that some readers will want even more information. That’s what I’ll be building here over the coming months. I’ll continue to develop this material even after the book is published, as additional readers explore it. For a time, then, this will be a living, growing extension to the written text.

As I create this supplementary material, I’ll first post it on this blog, looking for your feedback in terms of its clarity and accuracy, and hoping to get a sense from you as to whether there are other questions that I ought to address. Let’s try this out today with a first example; I look forward to your comments.

In Chapter 2 of the book, I have written

  • Over two thousand years ago, Greek thinkers became experts in geometry and found clever tricks for estimating the Earth’s shape and size.

This sentence then refers to an endnote, in which I state

  • The shadow that the Earth casts on the Moon during a lunar eclipse is always disk-shaped, no matter the time of day, which can be true only for a spherical planet. Earth’s size is revealed by comparing the lengths of shadows of two identical objects, separated by a known north-south distance, measured at noon on the same day.*

Obviously this is very terse, and I’m sure some readers will want an explanation of the endnote. Here’s the explanation that I’ll post on this website:

Read more

Dismantling Common Sense, Twice

In my last post I raised a question about the pros and cons of common sense. I left it as a wide-open question, as I was curious to see how readers would react.

Many aspects of common sense affect how we relate to other people, and it’s clear they have considerable value. But the intuitions we have for nature, though sometimes useful, are mostly wrong. These conceptual errors pose obstacles for students who are learning science for the first time.

It’s also interesting that once these students learn first chemistry and then Newtonian-era physics, they gain new intuitions for the natural world, a sort of classical-physics common sense. Much of this newfound common sense also turns out to be wrong: it badly misrepresents how the cosmos really works. This is a difficulty not only for students but also for many adults. If you’ve read about or even taken a class in basic astronomy or physics, it can then be challenging to make sense of twentieth-century physics, where Newtonian intuition can fail badly.

Read more

The Standard Model More Deeply: The Simplified Math of Quark “Color”

For non-expert readers who want to dig a bit deeper. This is the first post of two, the second of which will appear in a day or two:

In my last post I described, for the general reader and without using anything more than elementary fractions, how we know that each type of quark comes in three “colors” — a name which refers not to something that you can see by eye, but rather to the three “versions” of strong nuclear charge. Strong nuclear charge is important because it determines the behavior of the strong nuclear force between objects, just as electric charge determines the electric forces between objects. For instance, elementary particles with no strong nuclear charge, such as electrons, W bosons and the like, aren’t affected by the strong nuclear force, just as electrically neutral elementary particles, such as neutrinos, are immune to the electric force.

But a big difference is that there’s only one form or “version” of electric charge: in the language of professional physicists, protons have +1 unit of this charge, electrons have -1 unit of it, a nucleus of helium has +2 units of it, etc. By contrast, the strong nuclear charge comes in three versions, which are sometimes referred to as “redness”, “blueness” and “greenness” (because of a vague but highly imprecise analogue with the inner workings of the human eye). These versions of the charge combine in novel ways we don’t see in the electric context, and this plays a major role in the protons and neutrons found in every atom. It’s the math that lies behind this that I want to explain today; we’ll only need a little bit of trigonometry and complex numbers, though we’ll also need some careful reasoning.

Read more

The Size of an Atom: How Scientists First Guessed It’s About Quantum Physics

Atoms are all about a tenth of a billionth of a meter wide (give or take a factor of 2). What determines an atom’s size? This was on the minds of scientists at the turn of the 20th century. The particle called the “electron” had been discovered, but the rest of an atom was a mystery. Today we’ll look at how scientists realized that quantum physics, an idea which was still very new, plays a central role. (They did this using one of their favorite strategies: “dimensional analysis”, which I described in a recent post.)

Since atoms are electrically neutral, the small and negatively charged electrons in an atom had to be accompanied by something with the same amount of positive charge — what we now call “the nucleus”. Among many imagined visions for what atoms might be like was the 1904 model of J.J. Thompson, in which he imagined the electrons are embedded within a positively-charged sphere the size of the whole atom.

But Thompson’s former student Ernest Rutherford gradually disproved this model in 1909-1911, through experiments that showed the nucleus is tens of thousands of times smaller (in radius) than an atom, despite having most of the atom’s mass.

Once you know that electrons and atomic nuclei are both tiny, there’s an obvious question: why is an atom so much larger than either one? Here’s the logical problem”

  • Negatively charged particles attract positively charged ones. If the nucleus is smaller than the atom, why don’t the electrons find themselves pulled inward, thus shrinking the atom down to the size of that nucleus?
  • Well, the Sun and planets are tiny compared to the solar system as a whole, and gravity is an attractive force. Why aren’t the planets pulled into the Sun? It’s because they’re moving, in orbit. So perhaps the electrons are in orbit around the nucleus, much as planets orbit a star?
  • This analogy doesn’t work. Unlike planets, electrons orbiting a nucleus would be expected to emit ample electromagnetic waves (i.e. light, both visible and invisible), and thereby lose so much energy that they’d spiral into the nucleus in a fraction of a second.

(These statements about the radiated waves from planets and electrons can be understood with very little work, using — you guessed it — dimensional analysis! Maybe I’ll show you that in the comments if I have time.)

So there’s a fundamental problem here.

  • The tiny nucleus, with most of the atom’s mass, must be sitting in the middle of the atom.
  • If the tiny electrons aren’t moving around, they’ll just fall straight into the nucleus.
  • If they are moving around, they’ll radiate light and quickly spiral into the nucleus.

Either way, this would lead us to expect

  • Rnucleus = # Ratom

where # is not too, too far from 1. (This is the most naive of all dimensional analysis arguments: two radii in the same physical system shouldn’t be that different.) This is in contradiction to experiment, which tells us that # is about 1/100,000! So it seems dimensional analysis has failed.

Or is it we who have failed? Are we missing something, which, once included, will restore our confidence in dimensional analysis?

We are missing quantum physics, and in particular Planck’s constant h. When we include h into our dimensional analysis, a new possible size appears in our equations, and this sets the size of an atom. Details below.

Read more

E = m c-Squared: The Simple Dimensions of a Discovery

In my last post I introduced you to dimensional analysis, an essential trick for theoretical physicists, and showed you how you could address and sometimes solve interesting and important problems with it while hardly doing any work. Today we’ll look at it differently, to see its historical role in Einstein’s relativity.

Read more

%d bloggers like this: