Of Particular Significance

One of the concepts that’s playing a big role in contemporary discussions of the laws of nature is the notion of “vacua”, the plural of the word “vacuum”. I’ve just completed an article about what vacua are, and what it means for a universe to have multiple vacua, or for a theory that purports to describe a universe to predict that it has multiple vacua. In case you don’t want to plunge right in to that article, here’s a brief summary of why this is interesting and important.

Outside of physics, most people think of a vacuum as being the absence of air. For physicists thinking about the laws of nature, “vacuum” means space that has been emptied of everything — at least, emptied of everything that can actually be removed. That certainly means removing all particles from it. But even though vacuum implies emptiness, it turns out that empty space isn’t really that empty. There are always fields in that space, fields like the electric and magnetic fields, the electron field, the quark field, the Higgs field. And those fields are always up to something.

First, all of the fields are subject to “quantum fluctuations” — a sort of unstoppable jitter that nothing in our quantum world can avoid.  [Sometimes these fluctuations are referred to as “virtual particles”; but despite the name, those aren’t particles.  Real particles are well-behaved, long-lived ripples in those fields; fluctuations are much more random.] These fluctuations are always present, in any form of empty space.

Second, and more important for our current discussion, some of the fields may have average values that aren’t zero. [In our own familiar form of empty space, the Higgs field has a non-zero average value, one that causes many of the known elementary particles to acquire a mass (i.e. a rest mass).] And it’s because of this that the notion of vacuum can have a plural: forms of empty space can differ, even for a single universe, if the fields of that universe can take different possible average values in empty space. If a given universe can have more than one form of empty space, we say that “it has more than one vacuum”.

There are reasons to think our own universe might have more than one form of vacuum — more than just the one we’re familiar with. It is possible that the Standard Model (the equations used to describe all of the known elementary particles, and all the known forces except gravity) is a good description of our world, even up to much higher energies than our current particle physics experiments can probe. Physicists can predict, using those equations, how many forms of empty space our world would have. And their calculations show that our world would have (at least) two vacua: the one we know, along with a second, exotic one, with a much larger average value for the Higgs field. (Remember, this prediction is based on the assumption that the Standard Model’s equations apply in the first place.)  An electron in empty space would have a much larger mass than the electrons we know and love (and need!)

The future of the universe, and our understanding of how the universe came to be, might crucially depend on this second, exotic vacuum. Today’s article sets the stage for future articles, which will provide an explanation of why the vacua of the universe play such a central role in our understanding of nature at its most elemental.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON May 8, 2014

For those who haven’t heard: Professor Gerry Guralnik died. Here’s the New York Times obituary, which contains a few physics imperfections (though the most serious mistake in an earlier version was corrected, thankfully), but hopefully avoids any errors about Guralnik’s life.  Here’s another press release, from Brown University.

Guralnik, with Tom Kibble and Carl Hagen, wrote one of the four 1964 papers which represent the birth of the idea of the “Higgs” field, now understood as the source of mass for the known elementary particles — an idea that was confirmed by the discovery of a type of “Higgs” particle in 2012 at the Large Hadron Collider.  (I find it sad that the obituary is sullied with a headline that contains the words “God Particle” — a term that no physicist involved in the relevant research ever used, and which was invented in the 1990s, not as science or even as religion, but for $$$… by someone who was trying to sell his book.) The other three papers — the first by Robert Brout and Francois Englert, and the second and third by Peter Higgs, were rewarded with a Nobel Prize in 2013; it was given just to Englert and Higgs, Brout having died too early, in 2011.  Though Guralnik, Hagen and Kibble won many other prizes, they were not awarded a Nobel for their work, a decision that will remain forever controversial.

But at least Guralnik lived long enough to learn, as Brout sadly did not, that his ideas were realized in nature, and to see the consequences of these ideas in real data. In the end, that’s the real prize, and one that no human can award.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON May 6, 2014

To fill in another important detail that will be important later, I added a short section to the end of my article about quantum tunneling. Specifically, suppose you have an electron, placed in one of two traps, such that the electron can tunnel from one trap to the other.  What happens if one of the traps is deeper than the second?

This difference between the traps leads to a bias — the electron tends to end up in the deeper trap, because it is harder for it to tunnel back to the shallow trap than it is to tunnel into the deeper one.  This simple fact has implications for the entire universe, as I’ll describe in a few days.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON May 5, 2014

A few weeks ago there was (justified) hullabaloo following the release of results from the BICEP2 experiment, which (if correct as an experiment, and if correctly interpreted) may indicate the detection of gravitational waves that were generated at an extremely early stage in the universe (or at least in its current phase)… during a (still hypothetical but increasingly plausible) stage known as cosmic inflation.  (Here’s my description of the history of the early universe as we currently understand it, and my cautionary tale on which parts of the history are well understood (and why) and which parts are not.)

During that wild day or two following the announcement, a number of scientists stated that this was “the first direct observation of gravitational waves”.  Others, including me, emphasized that this was an “indirect observation of gravitational waves.”  I’m sure many readers noticed this discrepancy.  Who was right?

No one was wrong, not on this point anyway.  It was a matter of perspective. Since I think some readers would be interested to understand this point, here’s the story, and you can make your own judgment. (more…)

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON April 30, 2014

Our quantum world has many odd and counter-intuitive features.  One of these is “tunneling” — the ability of objects to pass through walls, escape from traps, and slip under mountains into the next valley.   We don’t encounter this effect in daily life; objects we’re used to are so incredibly unlikely to tunnel from one place to another that we will never hear of one doing the apparently impossible.   But in the atomic and subatomic realms, even in various types of modern technology, tunneling is an essential and commonplace feature of the quantum reality in which we live.

I’ve written a short article about this phenomenon, which you can read here, emphasizing the central role that tunneling plays in the world’s most powerful microscopes.  It should be suitable for anyone who has read a little about atoms.

This article lays the groundwork for a discussion of how tunneling could someday, in the distant future, end the universe as we know it.  It also prepares the way for a more advanced post about how a single physics theory (i.e., a set of equations designed to describe some aspect of nature) may have multiple `vacua’ (i.e. multiple solutions that each represent different ways that the universe could be configured — what empty space could be like, and what types of fields, forces and particles could be found in the universe — over long periods of time.)  If that’s confusing, stay tuned for a few days; I’ll soon explain it.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON April 29, 2014

Overnight, those of you in the Americas and well out into the Pacific Ocean, if graced with clear skies, will be able to observe what is known as “a total eclipse of the Moon” or a “lunar eclipse”. The Moon’s color will turn orange for about 80 minutes, with mid-eclipse occurring simultaneously in all the areas in which the eclipse is visible: 3:00-4:30 am for observers in New York, 12:00- 1:30 am for observers in Los Angeles, and so forth. [As a bonus, Mars will be quite near the Moon, and about as bright as it gets; you can’t miss it, since it is red and much brighter than anything else near the Moon.]

Since the Moon is so bright, you will be able to see this eclipse from even the most light-polluted cities. You can read more details of what to look for, and when to look for it in your time zone, at many websites, such as http://www.space.com/25479-total-lunar-eclipse-2014-skywatching-guide.html  However, many of them don’t really explain what’s going on.

One striking thing that’s truly very strange about the term “eclipse of the Moon” is that the Moon is not eclipsed at all. (more…)

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON April 14, 2014

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.