The press is full of excitement today at the news that anti-matter — hydrogen anti-atoms, specifically, made from positrons and anti-protons instead of electrons and protons — falls down rather than rising up. This has been shown in the ALPHA experiment at CERN. But no theoretical physicist is surprised. Today I’ll explain one of many reasons that no one in the halls of theoretical physics even blinked.
One basic point is that “anti-particle” is not a category but a relationship. We do not say “electrons are particles” and “positrons are anti-particles”, nor do we say “quarks are particles” and “anti-quarks are anti-particles.” Such statements would be inconsistent. Instead we say “quarks and anti-quarks are each others’ anti-particles.” (It’s like the term “opponent” in a football match.) That’s because some particles are their own anti-particles, including photons. If we tried to divide all the types of particles into two categories, it wouldn’t be clear where photons would go; we couldn’t say either that they are particles or that they are anti-particles.
Because of this, we can’t hope that all the types of particles separate into two groups, particles which fall and anti-particle which rise. At best, we would have to guess what would happen to particles that are their own anti-particles. Fortunately, this is easy. There is such a thing as a positronium atom, an exotic atom made from an electron and positron co-orbiting one other. A positronium atom is its own anti-particle; if we flip every particle for its anti-particle, the positronium atom’s electron and positron simply switch places. If indeed gravity pulls down on electrons and pushes up by the same amount on positrons, then gravity’s pull on a positronium atom would cancel. This atom would neither rise nor fall; it would float, feeling no net gravity.
This example would then lead us to expect that particles that are their own anti-particles will float. The logic would apply to photons; they would feel no gravity.
This would be a consistent picture. But experimentally, it is false: photons do feel gravity. The Sun bends the path of light, a fact that made Einstein famous in 1919, and an object’s strong gravity can create a gravitational lens that completely distorts the appearances of objects behind it. Photons can even orbit black holes. So experiment would force us to accept the picture shown below, if we want positrons to rise. Unfortunately, it is logically inconsistent.
The only consistent picture, then, is that everything falls. Are there any loopholes in this argument? Sure; perhaps the gravity of the Earth, made of atoms, causes electrons and quarks to fall rapidly and causes positrons and anti-quarks to rise slowly, so that positronium still falls, just more gently than ordinary atoms do. (The reverse would be true around a planet made of anti-atoms.) This gives us many more possibilities to consider, and we have to get into more complex questions of what experiment has and hasn’t excluded.
But we would still face another serious problem, because there are anti-quarks inside of protons. (One line of evidence for this is shown here.) If quarks and anti-quarks, which have the same inertial mass (the type of mass that determines how they change speed when pushed) had different gravitational mass (which determines how gravity affects them), then protons and neutrons, too, would not have equal inertial and gravitational mass. [The many gluons inside the protons and neutrons could make this even worse.] Since electrons do have equal inertial and gravitational mass, protons and neutrons would then fall at a different rate than electrons do. The consequence would be that different atoms would fall at slightly different rates. High precision experiments clearly say otherwise. This poses additional obstructions to the idea that anti-quarks (and the anti-protons and anti-neutrons that contain them) could rise in Earth’s gravity.
At best, when it comes to mass and gravity, existing experiments only allow for minor differences between atoms and anti-atoms. To look for subtle effects of any such differences is one of the real, long-term goals of the ALPHA experiment. What they’ve done so far is a neat experimental coup, but despite the headlines, it does not change our basic knowledge of anti-particles in general or of anti-atoms in particular. For that, we have a few years to wait.