Of Particular Significance

Author: Matt Strassler

On Wednesday February 6th, at 9 pm Eastern/6 pm Pacific time, Sean Carroll and I will be interviewed by Alan Boyle on “Virtually Speaking Science”.   The link where you can listen in (in real time or at your leisure) is http://www.blogtalkradio.com/virtually-speaking-science/2013/02/07/sean-carroll-matt-strassler-alan-boyle

What is “Virtually Speaking Science“?  It is an online radio program that presents, according to its website:

  • Informal conversations hosted by science writers Alan Boyle, Tom Levenson and Jennifer Ouellette, who explore the explore the often-volatile landscape of science, politics and policy, the history and economics of science, science deniers and its relationship to democracy, and the role of women in the sciences.

Sean Carroll is a Caltech physicist, astrophysicist, writer and speaker, one of the founders of the blog Cosmic Variance, who recently completed an excellent popular book (which I highly recommend) on the Higgs particle, entitled “The Particle at the End of the Universe“.  Our interviewer Alan Boyle is a noted science writer, author of the book “The Case for Pluto“, winner of many awards, and currently NBC News Digital’s science editor [at the blog  “Cosmic Log“].

I was interviewed on Virtually Speaking Science once before, by Tom Levenson, about the Large Hadron Collider (here’s the link).  Also, my public talk “The Quest for the Higgs Particle” is posted in their website (here’s the link to the audio and to the slides).

 

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON February 4, 2013

Fig. 1: A hydrogen atom consists of a tiny proton surrounded by an electron cloud, which is where the even tinier electron is to be found when sought.
Fig. 1: A hydrogen atom consists of a tiny proton “orbited” by an electron.

There’s been a lot of reporting recently on a puzzle in particle physics that I haven’t previously written about. There have been two attempts, a preliminary one in 2010 and a more detailed one reported just this month, to measure the size of a proton by studying the properties of an exotic atom, called “muonic hydrogen”. Similar to hydrogen, which consists of a proton orbited by an electron (Figure 1), this atom consists of a proton and a short-lived heavy cousin of the electron, called the muon (Figure 2). A muon, as far as we have ever been able to tell, is just like an electron in all respects except that it is heavier; more precisely, the electromagnetic force and the strong and weak nuclear force treat electrons and muons in exactly the same way. Only the first two of these forces should play a role in atoms (and neither gravity nor any force due to the Higgs field should matter either). So because we have confirmed our understanding of ordinary hydrogen with very high precision, we believe we also understand muonic hydrogen very well also.  But something’s amiss. (more…)

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 31, 2013

Ten days ago I started providing you with a more careful summary of the Higgs Symposium (held January 9-11 at the University of Edinburgh, as part of the new Higgs Center for Theoretical Physics), to make up for the quick blog posts that I put up during and just after the symposium (#1, #2 and #3). The aim was to provide a more coherent overview, appropriate for non-expert readers, of our current knowledge and ignorance concerning the recently discovered Higgs-like particle. Initially I put up about half of the summary, organized as follows

As of today, I have added the following segment, mainly based on Professor Nima Arkani-Hamed’s talk about the implications for supersymmetry of the (presumed)-Higgs particle’s mass and properties .

At least two more segments will follow soon.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 28, 2013

I’ve been quite busy with some physics research this week, but I have nevertheless managed to finish a new article on electrons, part of my Structure of Matter series, which aims (among other things) to introduce a non-expert to particle physics, step-by-step.  The completion of this article feels like a significant step for this website.  After all, the electron was the first subatomic particle and the first of the apparently-elementary particles to be discovered, about 115 years ago, and its discovery really gave birth to the field of particle physics we know today.  Moreover, it was the failure to describe the behavior of electrons within and outside of atoms that forced physicists to go beyond Newtonian views of physics processes, and introduce the theory of quantum mechanics.  Electrons, tiny as they are, are enormous in human life; they play a key role in all chemical reactions, including those that sustain our bodies.  Beyond that, they lie at the heart of much modern technology — electronics!  And there’s more.  So no particle physics website can be complete without an electron webpage.

Looking ahead, a question I sometimes get asked is whether I’m sure electrons (or any other elementary particles that physicists talk about) really exist.  After all, it is true I’ve never seen a picture of one taken with any sort of microscope!  Well, in answer to this question, I want to write an article on why we particle physicists are so confident that electrons (and atomic nuclei) exist… explaining the types of experiments and the types of logical reasoning that lead to this conclusion.  I suspect a lot of readers will find such an article interesting; after all, why should one take expert knowledge for granted just because it appears in a textbook or on a website?  Readers should demand to know where the knowledge came from — and a writer should be prepared to answer.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 24, 2013

My rather hasty, breathless and inconsistent summaries (#1, #2 and #3) of last week’s talks at the excellent Higgs Symposium (held at the University of Edinburgh, as part of the new Higgs Center for Theoretical Physics) clearly had their limitations.  So I thought it might be useful to give a more organized overview, with more careful language appropriate for non-expert readers, of our current knowledge and ignorance concerning the recently discovered Higgs-like particle (which most of us do believe is a Higgs particle of some type, though not necessarily of the simplest, “Standard Model” type.)

I’m therefore writing an article that tries to put the questions about the Higgs-like particle into a sensible order, and then draws upon the talks that were given at the Symposium to provide the current best answers. About half of the article is done, and you’re welcome to read it.  Due to other commitments, I won’t probably get back to finish it until next week.  But “Part 1” is long enough that it will take some time for most readers to absorb anyway…

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 17, 2013

I’ve been adding to my series of layperson’s articles on The Structure of Matter, which eventually will serve as an introduction to particle physics for those coming to this site for the first time. You might recall that in early December I supplemented my older article on molecules with an article on atoms. I got some terrific reader feedback, in the form of incisive constructive criticism, which allowed me to greatly improve the latter article. Well, readers, you’ve got another chance to help me out if you would like to — or you can just enjoy the read. I have three new articles (two of them short) which were put up over the last few weeks. These are:

Incidentally, the next stage in this series will be to describe electrons, and then I will turn to atomic nuclei, to the neutrons and protons that they contain, and eventually to the quarks and gluons that make up the neutrons and protons.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 15, 2013

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.