Pioneer Works is “an artist and scientist-led cultural center in Red Hook, Brooklyn that fosters innovative thinking through the visual and performing arts, technology, music, and science.” It’s a cool place: if you’re in the New York area, check them out! Among many other activities, they host a series called “Picture This,” in which scientists ruminate over scientific images that they particularly like. My own contribution to this series has just come out, in which I expound upon the importance and meaning of this graph from the CMS experimental collaboration at the Large Hadron Collider [LHC]. (The ATLAS experimental collaboration at the LHC has made essentially identical images.)
The point of the article is to emphasize the relation between the spikes seen in this graph and the images of musical frequencies that one might see in a recording studio (as in this image from this paper). The similarity is not an accident.
Each of the two biggest spikes is a sign of an elementary “particle”; the Z boson is the left-most spike, and the Higgs boson is the central spike. What is spiking is the probability of creating such a particle as a function of the energy of some sort of physical process (specifically, a collision of objects that are found inside protons), plotted along the horizontal axis. But energy E is related to the mass m of the “particle” (via E=mc2) and it is simultaneously related to the frequency f of the vibration of the “particle” (via the Planck-Einstein equation E = hf)… and so this really is a plot of frequencies, with spikes reflecting cosmic resonances analogous to the resonances of musical instruments. [If you find this interesting and would like more details, it was a major topic in my book.]
The title of the article refers to the fact that the Z boson and Higgs boson frequencies are out of tune, in the sense that if you slowed down their frequencies and turned them into sound, they’d be dissonant, and not very nice to listen to. The same goes for all the other frequencies of the elementary “particles”; they’re not at all in tune. We don’t know why, because we really have no idea where any of these frequencies come from. The Higgs field has a major role to play in this story, but so do other important aspects of the universe that remain completely mysterious. And so this image, which shows astonishingly good agreement between theoretical predictions (colored regions) and LHC data (black dots), also reveals how much we still don’t understand about the cosmos.