Tonight (January 13th) offers a wonderful opportunity for all of us who love the night sky, and also for science teachers. For those living within the shaded region of Fig. 1, the planet Mars will disappear behind the Moon, somewhere between 9 and 10 pm Eastern (6 and 7 pm Pacific), before reappearing an hour later. Most easily enjoyed with binoculars. (And, umm, without clouds, which will be my own limitation, I believe…)
For everyone else, look up anyway! Mars and the Moon will appear very close together, a lovely pair.
Why is this Cool?
“Occultations”, in which a planet or star disappears behind our Moon, are always cool. Normally, even though we know that the planets and the Moon move across the sky, we don’t get to actually see the motion. But here we can really watch the Moon close in on Mars — a way to visually experience the Moon’s motion around the Earth. You can see this minute by minute with the naked eye until Mars gets so close that the Moon’s brightness overwhelms it. Binoculars will allow you to see much more. With a small telescope, where you’ll see Mars as a small red disk, you can actually watch it gradually disappear as the Moon crosses in front of it. This takes less than a minute.
A particularly cool thing about this particular occultation is that it is happening at full Moon. Occultations like this can happen at any time of year or month, but when they happen at full Moon, it represents a very special geometry in the sky. In particular, it means that the Sun, Earth, Moon and Mars lie in almost a straight line, as shown (not to scale!!!) in Fig. 2.
- The Moon is full because it is fully lit from our perspective, which means that it must lie almost directly behind the Earth relative to the Sun. [If it were precisely behind it, then it would be in Earth’s shadow, leading to a lunar eclipse; instead it is slightly offset, as it is at most full Moons.]
- And when the Moon covers Mars from our perspective, that must mean Mars lies almost directly behind the Moon relative to the Earth.
So all four objects must lie nearly in a line, a relatively rare coincidence.
What Does This Occultation Teach Us?
Aside from the two things I’ve already mentioned — that an occultation is an opportunity to see the Moon’s motion, and that an occultation at full Moon implies the geometry of Fig. 2 — what else can we learn from this event, considered both on its own and in the context of others like it?
Distances and Sizes
Let’s start with one very simple thing: Mars is obviously farther from Earth than is the Moon, since it passes behind it. In fact, the Moon has occultations with all the planets, and all of them disappear behind the Moon instead of passing in front of it. This is why it has been understood for millennia that the Moon is closer to Earth than any of the planets.
Less obvious is that the map in Fig. 1 teaches us the size of the Moon. That’s because the width of the band where the Moon-Mars meeting is visible is approximately the diameter of the Moon. Why is that? Simple geometry. I’ve explained this here.
“Oppositions” and Orbital Periods
The moment when Mars is closest to Earth and brightest in the sky is approximately when the Sun, Earth and Mars lie in a straight line, known as “opposition”. Fig. 2 implies that an occultation of a planet at full Moon can only occur at or around that planet’s opposition. And indeed, while today’s occultation occurs on January 13th, Mars’ opposition occurs on January 15th.
Oppositions are very interesting for another reason; you can use them to learn a planet’s year. Mars’ most recent oppositions (and the next ones) are given in Fig. 3. You notice they occur about 25-26 months apart — just a bit more than two years.
This, in turn, implies something interesting, but not instantly obvious: the time between Martian oppositions tells us that a Martian year is slightly less than two Earth years. Why?
Fig. 4 shows what would happen if (a) a Martian year (the time Mars takes to orbit the Sun) were exactly twice as long as an Earth year, and (b) both orbits were perfect circles around the Sun. Then the time between oppositions would be exactly two Earth years.
But neither (a) nor (b) is exactly true. In fact a Martian year is 687 days, slightly less than two Earth years, whereas the time between oppositions is slightly more than two Earth years. Why? It takes a bit of thought, and is explained in detail here (for solar conjuctions rather than oppositions, but the argument is identical.)
The Planets, Sun and Moon are In a Line — Always!
And finally, one more thing about occultations of planets by the Moon: they happen for all the planets, and they actually happen pretty often, though some are much harder to observe than others. Here is a partial list, showing occultations of all planets [except Neptune is not listed for some unknown reason], as well as occultations of a few bright stars, in our current period. Why are these events so common?
Well (although the news media seems not to be aware of it!) the Moon and the planets are always laid out roughly in a (curved) line across the sky, though not all are visible at the same time. Since the Moon crosses the whole sky once a month, the chance of it passing in front of a planet is not particularly small!
Why are they roughly in a line? This is because the Sun and its planets lie roughly in a disk, with the Earth-Moon system also oriented in roughly the same disk. A disk, seen from someone sitting inside it, look like a line that goes across the sky… or rather, a huge circle that goes round the Earth.
To get a sense of how this works, look at Fig. 5. It shows a flat disk, seen from three perspectives (left to right): first head on, then obliquely (where it appears as an ellipse), and finally from the side (where it appears as a line segment.) The closer we come to the disk, the larger it will appear — and thus the longer the line segment will appear in side view. If we actually enter the disk from the side, the line segment will appear to wrap all the way around us, as a circle that we sit within.
Specifically for the planets, this means the following. Most planetary systems with a single star have the star at the near-center and planets orbiting in near-circles, with all the orbits roughly in a disk around the star. This is shown in Fig. 6. Just as in Fig. 5, when the star and planets are viewed obliquely, their orbits form an ellipse; and when they are viewed from the side, their orbits form a line segment, as a result of which the planets lie in a line. When we enter the planetary disk, so that some planets sit farther from the Sun than we do, then this line becomes a circle that wraps around us. That circle is the ecliptic, and all the planets and the Sun always lie close to it.
Reversing the logic, the fact that we observe that the planets and Sun lie on a curved line across the sky teaches us that the planetary orbits lie in a disk. This, too, has been known for millennia, long before humans understood that the planets orbit the Sun, not the Earth.
(This is also true of our galaxy, the Milky Way, in which the Sun is just one of nearly a trillion stars. The fact that the Milky Way always forms a cloudy band across the sky provides evidence that our galaxy is in the shape of a disk, probably somewhat like this one.)
The Mysteries of the Moon
But why does the Moon also lie on the ecliptic? That is, since the Moon orbits the Earth and not the Sun, why does its orbit have to lie in the same disk as the planets all do?
This isn’t obvious at all! (Indeed it was once seen as evidence that the planets and Sun must, like the Moon, all orbit the Earth.) But today we know this orientation of the Moon’s orbit is not inevitable. The moons of the planet Uranus, for instance, don’t follow this pattern; they and Uranus’ rings orbit in the plane of Uranus’ equator, tipped almost perpendicular to the plane of planetary orbits.
Well, the fact that the Moon’s orbit is almost in the same plane as the planets’ orbits — and that of Earth’s equator — is telling us something important about Earth’s history and about how the Moon came to be. The current leading explanation for the Moon’s origin is that the current Earth and Moon were born from the collision of two planets. Those planets would have been traveling in the same plane as all the others, and if they suffered a glancing blow within that plane, then the debris from the collision would also have been mostly in that plane. As the debris coalesced to form the Earth and Moon we know, they would have ended up orbiting each other, and spinning around their axes, in roughly this very same plane. (Note: This is a consequence of the conservation of angular momentum.)
This story potentially explains the orientation of the Moon’s orbit, as well as many other strange things about the Earth-Moon system. But evidence in favor of this explanation is still not overwhelmingly strong, and so we should consider this as an important question that astronomy has yet to fully settle.
So occultations, oppositions, and their near-simultaneous occurrence have a great deal to teach us and our students. Let’s not miss the opportunity!