Category Archives: LHC News

At the Naturalness 2014 Conference

Greetings from the last day of the conference “Naturalness 2014“, where theorists and experimentalists involved with the Large Hadron Collider [LHC] are discussing one of the most widely-discussed questions in high-energy physics: are the laws of nature in our universe “natural” (= “generic”), and if not, why not? It’s so widely discussed that one of my concerns coming in to the conference was whether anyone would have anything new to say that hadn’t already been said many times.

What makes the Standard Model’s equations (which are the equations governing the known particles, including the simplest possible Higgs particle) so “unnatural” (i.e. “non-generic”) is that when one combines the Standard Model with, say, Einstein’s gravity equations. or indeed with any other equations involving additional particles and fields, one finds that the parameters in the equations (such as the strength of the electromagnetic force or the interaction of the electron with the Higgs field) must be chosen so that certain effects almost perfectly cancel, to one part in a gazillion* (something like 10³²). If this cancellation fails, the universe described by these equations looks nothing like the one we know. I’ve discussed this non-genericity in some detail here.

*A gazillion, as defined on this website, is a number so big that it even makes particle physicists and cosmologists flinch. [From Old English, gajillion.]

Most theorists who have tried to address the naturalness problem have tried adding new principles, and consequently new particles, to the Standard Model’s equations, so that this extreme cancellation is no longer necessary, or so that the cancellation is automatic, or something to this effect. Their suggestions have included supersymmetry, warped extra dimensions, little Higgs, etc…. but importantly, these examples are only natural if the lightest of the new particles that they predict have masses that are around or below 1 TeV/c², and must therefore be directly observable at the LHC (with a few very interesting exceptions, which I’ll talk about some other time). The details are far too complex to go into here, but the constraints from what was not discovered at LHC in 2011-2012 implies that most of these examples don’t work perfectly. Some partial non-automatic cancellation, not at one part in a gazillion but at one part in 100, seems to be necessary for almost all of the suggestions made up to now.

So what are we to think of this? Continue reading

Off to CERN

After a couple of months of hard work on grant writing, career plans and scientific research, I’ve made it back to my blogging keyboard.  I’m on my way to Switzerland for a couple of weeks in Europe, spending much of the time at the CERN laboratory. CERN, of course, is the host of the Large Hadron Collider [LHC], where the Higgs particle was discovered in 2012. I’ll be consulting with my experimentalist and theorist colleagues there… I have many questions for them. And I hope they’ll have many questions for me too, both ones I can answer and others that will force me to go off and think for a while.

You may recall that the LHC was turned off (as planned) in early 2013 for repairs and an upgrade. Run 2 of the LHC will start next year, with protons colliding at an energy of around 13 TeV per collision. This is larger than in Run 1, which saw 7 TeV per collision in 2011 and 8 TeV in 2012.  This increases the probability that a proton-proton collision will make a Higgs particle, which has a mass of 125 GeV/c², by about a factor of 2 ½.  (Don’t try to figure that out in your head; the calculation requires detailed knowledge of what’s inside a proton.) The number of proton-proton collisions per second will also be larger in Run 2 than in Run 1, though not immediately. In fact I would not be surprised if 2015 is mostly spent addressing unexpected challenges. But Run 1 was a classic: a small pilot run in 2010 led to rapid advances in 2011 and performance beyond expectations in 2012. It’s quite common for these machines to underperform at first, because of unforeseen issues, and outperform in the long run, as those issues are solved and human ingenuity has time to play a role. All of which is merely to say that I would view any really useful results in 2015 as a bonus; my focus is on 2016-2018.

Isn’t it a bit early to be thinking about 2016? No, now is the time to be thinking about 2016 triggering challenges for certain types of difficult-to-observe phenomena. These include exotic, unexpected decays of the Higgs particle, or other hard-to-observe types of Higgs particles that might exist and be lurking in the LHC’s data, or rare decays of the W and Z particle, and more generally, anything that involves a particle whose (rest) mass is in the 100 GeV/c² range, and whose mass-energy is therefore less than a percent of the overall proton-proton collision energy. The higher the collision energy grows, the harder it becomes to study relatively low-energy processes, even though we make more of them. To be able to examine them thoroughly and potentially discover something out of place — something that could reveal a secret worth even more than the Higgs particle itself — we have to become more and more clever, open-minded and vigilant.

Some Higgs News from the LHCP Conference

Some news on the Higgs particle from the ATLAS and CMS experiments, the two general purpose experiments at the Large Hadron Collider. I just mention a few highlights. Continue reading

In Memoriam: Gerry Guralnik

For those who haven’t heard: Professor Gerry Guralnik died. Here’s the New York Times obituary, which contains a few physics imperfections (though the most serious mistake in an earlier version was corrected, thankfully), but hopefully avoids any errors about Guralnik’s life.  Here’s another press release, from Brown University.

Guralnik, with Tom Kibble and Carl Hagen, wrote one of the four 1964 papers which represent the birth of the idea of the “Higgs” field, now understood as the source of mass for the known elementary particles — an idea that was confirmed by the discovery of a type of “Higgs” particle in 2012 at the Large Hadron Collider.  (I find it sad that the obituary is sullied with a headline that contains the words “God Particle” — a term that no physicist involved in the relevant research ever used, and which was invented in the 1990s, not as science or even as religion, but for $$$… by someone who was trying to sell his book.) The other three papers — the first by Robert Brout and Francois Englert, and the second and third by Peter Higgs, were rewarded with a Nobel Prize in 2013; it was given just to Englert and Higgs, Brout having died too early, in 2011.  Though Guralnik, Hagen and Kibble won many other prizes, they were not awarded a Nobel for their work, a decision that will remain forever controversial.

But at least Guralnik lived long enough to learn, as Brout sadly did not, that his ideas were realized in nature, and to see the consequences of these ideas in real data. In the end, that’s the real prize, and one that no human can award.

Higgs Experts: A Small But Important Correction to a Previous Post

I have to admit that this post is really only important for experimentalists interested in searching for non-Standard Model decays of the Higgs particle.  I try to keep these technical posts very rare, but this time I do need to slightly amend a technical point that I made in an article a few weeks ago. Continue reading

A 100 TeV Proton-Proton Collider?

During the gap between the first run of the Large Hadron Collider [LHC], which ended in 2012 and included the discovery of the Higgs particle (and the exclusion of quite a few other things), and its second run, which starts a year from now, there’s been a lot of talk about the future direction for particle physics. By far the most prominent option, both in China and in Europe, involves the long-term possibility of a (roughly) 100 TeV proton-proton collider — that is, a particle accelerator like the LHC, but with 5 to 15 times more energy per collision.

Do we need such a machine? Continue reading

Could the Higgs Decay to New Z-like Particles?

Today I’m continuing with my series, begun last Tuesday (click here for more details on the project), on the possibility that the Higgs particle discovered 18 months ago might decay in unexpected ways.

I’ve finished an article describing how we can, with current and with future Large Hadron Collider [LHC] data, look for a Higgs particle decaying to two new spin one particles, somewhat similar to the Z particle, but with smaller mass and much weaker interactions with ordinary matter.  [For decays to spin zero particles, click here.] Just using existing published plots on LHC events with two lepton/anti-lepton pairs, my colleagues and I, in our recent paper, were able to put strong limits on this scenario: for certain masses, decays to the new particles can occur in at most one in a few thousand Higgs particles.  The ATLAS and CMS experiments could certainly do better, perhaps even to the point of making a discovery with existing data, if this process is occurring in nature.

The Higgs could decay to two new spin-one particles, here labelled ZD, which in turn could each produce a lepton/anti-lepton pair.  The resulting signature would be spectacular, but neither ATLAS nor CMS has done a optimizal search for this signal covering the full allowed ZD mass range.

The Higgs could decay to two new spin-one particles, here labelled ZD, which in turn could each produce a lepton/anti-lepton pair (e = electron, μ = muon). The resulting signature would be spectacular, but neither ATLAS nor CMS has yet published an optimal search for this signal across the full allowed ZD mass range.

You might wonder how particle physicists could have missed a particle with a mass lower than that of the Z particle; wouldn’t we already have observed it? A clue as to how this can occur: it took much longer to discover the muon neutrino than the muon, even though the neutrino has a much lower mass. Similarly, it took much longer to discover the Higgs particle than the top quark, even though the Higgs has a lower mass. Why did this happen?

It happened because muon neutrinos interact much more weakly with ordinary matter than do muons, and are therefore much harder to produce, measure and study than are muons. Something similar is true of the Higgs particle compared to the top quark; although the top quark is nearly 50% heavier than the Higgs, the Large Hadron Collider [LHC] produces 20 times as many top quarks and anti-quarks as Higgs particles, and the signature of a top quark is usually more distinctive. So new low-mass particles to which the Higgs particle can perhaps decay could easily have been missed, if they interact much more weakly with ordinary matter than do the Z particle, top quark, bottom quark, muon, etc.

The muon neutrino was discovered not because these neutrinos were directly produced in collisions of ordinary matter but rather because muons were first produced, and these then decayed to muon neutrinos (plus an electron and an electron anti-neutrino).  Similarly, new particles may be discovered not because we produce them directly in ordinary matter collisions, but because, as in the above figure, we first produce a Higgs particle in proton-proton collisions at the LHC, and the Higgs may then in turn decay to them.

I should emphasize that direct searches for these types of new particles are taking place, using both old and new data from a variety of particle physics machines (here’s one example.) But it is often the case that these direct searches are not powerful enough to find the new particles, at least not soon, and therefore they may first show up in unexpected exotic decays of the Higgs… especially since the LHC has already produced a million Higgs particles, most of them at the ATLAS and CMS experiments, with a smaller fraction at LHCb.

I hope that some ATLAS and CMS experimenters are looking for this signal… and that we’ll hear results at the upcoming Moriond conference.

Our Survey of Exotic Decays of the Higgs is Done

After many months gestation and a difficult labor, a behemoth is born!  Yes, it’s done, finally: our 200 page tome entitled “Exotic Decays of the 125 GeV Higgs Boson“.  Written by thirteen hard-working theoretical particle physicists, this is a paper that examines a wide class of possible decays that our newly found Higgs particle might exhibit, but that would not occur if the Standard Model of particle physics (the equations we use to describe the known elementary particles and forces plus the simplest possible type of Higgs particle) were all there was to see at the Large Hadron Collider [LHC], the giant proton-proton collider outside of Geneva, Switzerland.  

[Non-experts; sorry, but this paper was written for experts, and probably has a minimum of two words of jargon per sentence. I promise you a summary soon.]

Why is looking for unusual and unexpected decays of the Higgs particle so important?  [I’ve written about the possibility of these “exotic” decays before on this website (see herehere,  hereherehereherehere and here).]  Because Higgs particles are sensitive creatures, easily altered, possibly in subtle ways, by interactions with new types of particles that we wouldn’t yet know about from the LHC or our other experiments. (This sensitivity of the Higgs was noted as far back to the early 1980s, though its generality was perhaps only emphasized in the last decade.)  The Higgs particle is very interesting not only on its own, for what it might reveal about the Higgs field (on which our very existence depends), but also as a potential opportunity for the discovery of currently unknown, lightweight particles, to which it might decay.  Such particles might be the keys to unlocking secrets of nature, such as what dark matter is, or maybe even (extreme speculation alert) the naturalness puzzle — very roughly, the puzzle of why the mass of the Higgs particle can be so small compared to the masses of the smallest possible black holes.

The goal of our paper, which is extensive in its coverage (though still not comprehensive — this is a very big subject) is to help our experimental colleagues at ATLAS and CMS, the general purpose experiments at the LHC, decide what to search for in their current (2011-2012) and future (2015-) data, and perhaps assist in their decisions on triggering strategies for the data collecting run that will begin in 2015.  (Sorry, LHCb folks, we haven’t yet looked at decays where you’d have an advantage.) And we hope it will guide theorists too, by highlighting important unanswered questions about how to look for certain types of exotic decays.  Of course the paper has to go through peer review before it is published, but we hope it will be useful to our colleagues immediately. Time is short; 2015 is not very far away.

Although our paper contains some review of the literature, a number of its results are entirely new.  I’ll tell you more about them after I’ve recovered, and probably after most people are back from break in January.  (Maybe for now, as a teaser, I’ll just say that one of the strongest limits we obtained, as an estimate based on reinterpreting published ATLAS and CMS data, is that no more than a few × 10-4 of Higgs particles decay to a pair of neutral spin-one particles with mass in the 20 – 62 GeV/c2 range… and the experimentalists themselves, by re-analyzing their data, could surely do better than we did!)  But for the moment, I’d simply like to encourage my fellow experts, both from the theory side and the experimental side, to take a look… comments are welcome.

Finally, I’d like to congratulate and thank my young colleagues, all of whom are pre-tenure and several of whom are still not professors yet, on their excellent work… it has been a pleasure to collaborate with them.  They led the way, not me.  They are (in alphabetical order): David Curtin, Rouven Essig, Stefania Gori, Prerit Jaiswal, Andrey Katz, Tao Liu, Zhen Liu, David McKeen, Jessie Shelton, Ze’ev Surujon, Brock Tweedie, and Yi-Ming Zhong. They hail from around the world, but they’ve worked together like family… a great example of how our international effort to understand nature’s deep mysteries brings unity of purpose from a diversity of origins.