Tag Archives: StandardModel

Physics is Broken!!!

Last Thursday, an experiment reported that the magnetic properties of the muon, the electron’s middleweight cousin, are a tiny bit different from what particle physics equations say they should be. All around the world, the headlines screamed: PHYSICS IS BROKEN!!! And indeed, it’s been pretty shocking to physicists everywhere. For instance, my equations are working erratically; many of the calculations I tried this weekend came out upside-down or backwards. Even worse, my stove froze my coffee instead of heating it, I just barely prevented my car from floating out of my garage into the trees, and my desk clock broke and spilled time all over the floor. What a mess!

Broken, eh? When we say a coffee machine or a computer is broken, it means it doesn’t work. It’s unavailable until it’s fixed. When a glass is broken, it’s shattered into pieces. We need a new one. I know it’s cute to say that so-and-so’s video “broke the internet.” But aren’t we going a little too far now? Nothing’s broken about physics; it works just as well today as it did a month ago.

More reasonable headlines have suggested that “the laws of physics have been broken”. That’s better; I know what it means to break a law. (Though the metaphor is imperfect, since if I were to break a state law, I’d be punished, whereas if an object were to break a fundamental law of physics, that law would have to be revised!) But as is true in the legal system, not all physics laws, and not all violations of law, are equally significant.

Continue reading

SEARCH Day 2

Day 2 of the SEARCH workshop will get a shorter description than it deserves, because I’ve had to spend time finishing my own talk for this morning. But there were a lot of nice talks, so let me at least tell you what they were about.

Both ATLAS and CMS presented their latest results on searches for supersymmetry. (I should remind you that “searches for supersymmetry” are by no means actually limited to supersymmetry — they can be used to discover or exclude many other new particles and forces that have nothing to do with supersymmetry at all.) Speakers Pascal Pralavorio and Sanjay Padhi gave very useful overviews of the dozens of searches that have been done so far as part of this effort, including a few rather new results that are very powerful. (We should see even more appear at next week’s Supersymmetry conference.) My short summary: almost everything easy has been done thoroughly; many challenging searches have also been carried out; if superpartner particles are present, they’re either

  • so heavy that they aren’t produced very often (e.g. gluinos)
  • rather lightweight, but still not so often produced (e.g. top squarks, charginos, neutralinos, sleptons)
  • produced often, but decaying in some way that is very hard to detect (e.g. gluinos decaying only to quarks, anti-quarks and gluons)

Then we had a few talks by theorists. Patrick Meade talked about how unknown particles that are affected by weak nuclear and electromagnetic forces, but not by strong nuclear forces, could give signs that are hiding underneath processes that occur in the Standard Model. (Examples of such particles are the neutralinos and charginos or sleptons of supersymmetry.) To find them requires increased precision in our calculations and in our measurements of processes where pairs of W and/or Z and/or Higgs particles are produced. As a definite example, Meade noted that the rate for producing pairs of W particles disagrees somewhat from current predictions based on the Standard Model, and emphasized that this small disagreement could be due to new particles (such as top squarks, or sleptons, or charginos and neutralinos) although at this point there’s no way to know.

Matt Reece gave an analogous talk about spin-zero quark-like particles that do feel strong nuclear forces, the classic example of which are top squarks. Again, the presence of these particles can be hidden underneath the large signals from production of top quark/anti-quark pairs, or other common processes. ATLAS and CMS have been working hard to look for signals of these types of particles, and have made a lot of progress, but there are still quite a few possible signals that haven’t been searched for yet. Among other things, Reece discussed some methods invented by theorists that might be useful in contributing to this effort. As with the previous talk, the key to a complete search will be improvements in calculations and measurements of top quark production, and of other processes that involve known particles.

After lunch there was a more general discussion about looking for supersymmetry, including conversation about what variants of supersymmetry haven’t yet been excluded by existing ATLAS and CMS searches.  (I had a few things to say about that in my talk, but more on that tomorrow.)

Jesse Thaler gave a talk reviewing the enormous progress that has been made in understanding how to distinguish ordinary jets arising from quarks and gluons versus jet-like objects made from a single high-energy W, Z, Higgs or top quark that decays to quarks and anti-quarks. (The jargon is that the trick is to use “jet substructure” — the fact that inside a jet-like W are two sub-jets, each from a quark or anti-quark.) At SEARCH 2012, the experimenters showed very promising though preliminary results using a number of new jet substructure methods that had been invented by (mostly) theorists. By now, the experimenters have shown definitively that these methods work — and will continue to work as the rate of collisions at the LHC grows — and have made a number of novel measurements using them. Learning how to use jet substructure is one of the great success stories of the LHC era, and it will continue to be a major story in coming years.

Two talks by ATLAS (Leandro Nisanti) and CMS (Matt Hearndon) followed, each with a long list of careful measurements of what the Standard Model is doing, mostly based so far only on the 2011 data set (and not yet including last year’s data). These measurements are crucially important for multiple reasons:

  • They provide important information which can serve as input to other measurements and searches.
  • They may reveal subtle problems with the Standard Model, due to indirect or small effects from unknown particles or forces.
  • Confirming that measurements of certain processes agree with theoretical predictions gives us confidence that those predictions can be used in other contexts, in particular in searches for unknown particles and forces.

Most, but not all, theoretical predictions for these careful measurements have worked well. Those that aren’t working so well are of course being watched and investigated carefully — but there aren’t any discrepancies large enough to get excited about yet (other than the top quark forward-backward asymmetry puzzle, which wasn’t discussed much today). In general, the Standard Model works beautifully — so far.

The day concluded with a panel discussion focused on these Standard Model measurements. Key questions discussed included: how do we use LHC data to understand the structure of the proton more precisely, and how in turn does that affect our searches for unknown phenomena? In particular, a major concern is the risk of circularity; that a phenomenon from an unknown type of particle could produce a subtle effect that we would fail to recognize for what it is, instead misinterpreting it as a small misunderstanding of proton structure, or as a small problem with a theoretical calculation. Such are the challenges of making increasingly precise measurements, and searching for increasingly rare phenomena, in the complicated environment of the LHC.