Of Particular Significance

Tag: QuantumFieldTheory

Why do I find the word particle so problematic that I keep harping on it, to the point that some may reasonably view me as obsessed with the issue? It has to do with the profound difference between the way an electron is viewed in 1920s quantum physics (“Quantum Mechanics”, or QM for short) as opposed to 1950s relativistic Quantum Field Theory (abbreviated as QFT). [The word “relativistic” means “incorporating Einstein’s special theory of relativity of 1905”.] My goal this week is to explain carefully this difference.

The overarching point:

I’ve discussed this to some degree already in my article about how the view of an electron has changed over time, but here I’m going to give you a fuller picture. To complete the story will take two or three posts, but today’s post will already convey one of the most important points.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON February 24, 2025

Yesterday I posted an animation of a quantum wave function, and as a brain teaser, I asked readers to see if they could interpret it. Here it is again:

Yesterday’s wave function, showing an interesting interference phenomenon.

Admittedly, it’s a classic trap — one I use as a teaching tool in every quantum physics class. The wave function definitely looks, intuitively, as though two particles are colliding. But no. . . the wave function describes only one particle.

And what is this particle doing? It’s actually in the midst of a disguised version of the famous double slit experiment! This version is much simpler than the usual one, and will be super-useful to us going forward. It will make it significantly easier to see how all the puzzles of the double-slit experiment play out, both from the old, outdated but better known perspective of 1920’s quantum physics and from the modern perspective of quantum field theory.

You can read the details about this wave function — why it can’t possibly describe two particles, why it shows interference despite there being only one particle, and why it gives us a simpler version of the double-slit experiment — in an addendum to yesterday’s post.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON February 21, 2025

A scientific brain teaser for readers: here’s a wave function evolving over time, presented in the three different representations that I described in a post earlier this week. [Each animation runs for a short time, goes blank, and then repeats.] Can you interpret what is happening here?

The explanation — and the reasons why this example is particularly useful, informative, and interesting (I promise!) — is coming soon [it will be posted here tomorrow morning Boston time, Friday Feb 21st.]

[Note added on Thursday: I give this example in every quantum mechanics class I teach. No matter how many times I have said, with examples, that a wave function exists in the space of possibilities, not in physical space, it happens every time that 90%-95% of the students think this shows two particles. It does not. And that’s why I always give this example.]

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON February 20, 2025

What is a wave function in quantum physics?

Such a question generates long and loud debates among philosophers of physics (and more limited debate among most physicists, who tend to prefer to make predictions using wave functions rather than wondering what they are.) I have a foot in both camps, even though I have no real credentials among the former set. But no matter; today I won’t try to answer my own question in any profound way. We can debate the deeper meaning of wave functions another time.

Instead I just want to address the question practically: what is this function for, in what sense does it wave, and how does it sit in the wider context of physics?

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON February 19, 2025

If you’re of a certain age, you know Alan Alda from his wonderful acting in television shows and in movies. But you may not know of his long-standing interest in science communication and his podcast Clear and Vivid (named for the characteristics that he feels all communication should have.)

Alda and I had a great conversation about the idea that we are made of waves, and what it means for our relationship to the universe. A slimmed-down version of that discussion is now available on his podcast. I hope you enjoy it!

Separately, as promised: to my last post, which covered various ways of depicting and interpreting wave functions, I’ve added explanations of the two quantum wave functions that I placed at the end. Tomorrow I’ll take a step back and consider wave functions from a larger point of view, taking a brief look at what they are (and aren’t), what’s “wavy” (and not) about them, and at their roles in contexts ranging from pre-quantum physics of the 19th century to quantum field theory of the 21st.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON February 18, 2025

Before we knew about quantum physics, humans thought that if we had a system of two small objects, we could always know where they were located — the first at some position x1, the second at some position x2. And after Isaac Newton’s breakthroughs in the late 17th century, we believed that by combining this information with knowledge of the objects’ motions and the forces acting upon them, we could calculate where they would be in the future.

But in our quantum world, this turns out not to be the case. Instead, in Erwin Schrödinger’s 1925 view of quantum physics, our system of two objects has a wave function which, for every possible x1 and x2 that the objects could have, gives us a complex number Ψ(x1, x2). The absolute-value-squared of that number, |Ψ(x1, x2)|2, is proportional to the probability for finding the first object at position x1 and the second at position x2 — if we actually choose to measure their positions right away. If instead we wait, the wave function will change over time, following Schrödinger’s wave equation. The updated wave function’s square will again tell us the probabilities, at that later time, for finding the objects at those particular positions.

The set of all possible object locations x1 and x2 is what I am calling the “space of possibilities” (also known as the “configuration space”), and the wave function Ψ(x1, x2) is a function on that space of possibilities. In fact, the wave function for any system is a function on the space of that system’s possibilities: for any possible arrangement X of the system, the wave function will give us a complex number Ψ(X).

Drawing a wave function can be tricky. I’ve done it in different ways in different contexts. Interpreting a drawing of a wave function can also be tricky. But it’s helpful to learn how to do it. So in today’s post, I’ll give you three different approaches to depicting the wave function for one of the simplest physical systems: a single object moving along a line. In coming weeks, I’ll give you more examples that you can try to interpret. Once you can read a wave function correctly, then you know your understanding of quantum physics has a good foundation.

For now, everything I’ll do today is in the language of 1920s quantum physics, Schrödinger style. But soon we’ll put this same strategy to work on quantum field theory, the modern language of particle physics — and then many things will change. Familiarity with the more commonly discussed 1920s methods will help you appreciate the differences.

(more…)
Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON February 17, 2025

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.