A few weeks ago, I reported on the completion of a large project, with which I’ve been personally involved, to investigate how particle physicists at the Large Hadron Collider [LHC] could be searching, not only in the future but even right now, for possible “Exotic Decays” of the newly-discovered Higgs particle .
By the term “exotic decays” (also called “non-Standard-Model [non-SM] Decays”), we mean “decays of this particle that are not expected to occur unless there’s something missing from the Standard Model (the set of equations we use to describe the known elementary particles and forces and the simplest possible type of Higgs field and its particle).” I’ve written extensively on this website about this possibility (see here, here, here, here, here, here, here and here), though mostly in general terms. In our recent paper on Exotic Decays, we have gone into nitty-gritty detail… the sort of detail only an expert could love. This week I’m splitting the difference, providing a detailed and semi-technical overview of the results of our work. This includes organized lists of some of the decays we’re most likely to run across, and suggestions regarding the ones most promising to look for (which aren’t always the most common ones.)
Before I begin, let me again mention the twelve young physicists who were co-authors on this work, all of whom are pre-tenure and several of whom are still not professors yet. [ When New Scientist reported on our work, they unfortunately didn’t even mention, much less list, my co-authors.] They are (in alphabetical order): David Curtin, Rouven Essig, Stefania Gori, Prerit Jaiswal, Andrey Katz, Tao Liu, Zhen Liu, David McKeen, Jessie Shelton, Ze’ev Surujon, Brock Tweedie, and Yi-Ming Zhong.