Tag Archives: DarkEnergy

If It Holds Up, What Might BICEP2’s Discovery Mean?

Well, yesterday was quite a day, and I’m still sifting through the consequences.

First things first.  As with all major claims of discovery, considerable caution is advised until the BICEP2 measurement has been verified by some other experiment.   Moreover, even if the measurement is correct, one should not assume that the interpretation in terms of gravitational waves and inflation is correct; this requires more study and further confirmation.

The media is assuming BICEP2’s measurement is correct, and that the interpretation in terms of inflation is correct, but leading scientists are not so quick to rush to judgment, and are thinking things through carefully.  Scientists are cautious not just because they’re trained to be thoughtful and careful but also because they’ve seen many claims of discovery withdrawn or discredited; discoveries are made when humans go where no one has previously gone, with technology that no one has previously used — and surprises, mistakes, and misinterpretations happen often.

But in this post, I’m going to assume assume assume that BICEP2’s results are correct, or essentially correct, and are being correctly interpreted.  Let’s assume that [here’s a primer on yesterday’s result that defines these terms]

  • they really have detected “B-mode polarization” in the “CMB” [Cosmic Microwave Background, the photons (particles of light) that are the ancient, cool glow leftover from the Hot Big Bang]
  • that this B-mode polarization really is a sign of gravitational waves generated during a brief but dramatic period of cosmic inflation that immediately preceded the Hot Big Bang,

Then — IF BICEP2’s results were basically right and were being correctly interpreted concerning inflation — what would be the implications?

Well… Wow…  They’d really be quite amazing. Continue reading

A Primer On Today’s Events

The obvious questions and their brief answers, for those wanting to know what’s going on today. If you already know roughly what’s going on and want the bottom line, read the answer to the last question.

You may want to start by reading my History of the Universe articles, or at least having them available for reference.

The expectation is that today we’re going to hear from the BICEP2 experiment.

  • What is BICEP2?

BICEP2, located at the South Pole, is an experiment that looks out into the sky to study the polarization of the electromagnetic waves that are the echo of the Hot Big Bang; these waves are called the “cosmic microwave background”.

  • What are electromagnetic waves?

Electromagnetic waves are waves in the electric and magnetic fields that are present everywhere in space.  Visible light is an electromagnetic wave, as are X-rays, radio waves, and microwaves; the only difference between these types of electromagnetic waves is how fast they wiggle and how long the distance is from one wave crest to the next.   Continue reading

My New Articles on Big Bang, Inflation, Etc.

I haven’t written in detail about the history of the universe before, but with an important announcement coming up today, it was clearly time I do so.

Let’s start from the beginning. How did the universe begin?

You may have heard that “the Big Bang theory says that the universe began with a giant explosion.” THIS IS FALSE. That’s not what the original Big Bang Theory said, and it’s certainly not what the modern form of the Big Bang Theory says. The Big Bang is not like a Big Bomb. It’s not an explosion. It’s not like a seed exploding or expanding into empty space. It’s an expansion of space itself — space that was already large. And in the modern theory of the Big Bang, the hot, dense, cooling universe that people think of as the Big Bang wasn’t even the beginning.

How did the universe begin? We haven’t the faintest idea.

That’s right; we don’t know. And that’s not surprising; we can trace the history back a long way, an amazingly long way, but at some point, what we know, or even what we can make educated guesses about, drops to zero.

Unfortunately, in books, on websites, and on many TV programs, there are many, many, many, many, many descriptions of the universe that say that the Big Bang was the beginning of the universe — that the universe started with a singularity (one which they incorrectly draw as a point in space, rather than a moment in time) — and that we know everything (or can guess everything) that happened after the beginning of the universe. Many of them even explicitly say that the Big Bang was an explosion, or they illustrate it that way — as in, for instance, Stephen Hawking’s TV special on the universe. [Sigh — How are scientists supposed to explain these ideas correctly to the public when Stephen Hawking’s own TV program shows a completely misleading video?!] This is just not true, as any serious expert will tell you.

So what do we actually know? or at least suspect?

Out of the fog of our ignorance comes the strong suspicion — not yet the certainty — that at some point in the distant past (about 13.7 billion years ago) the part of the universe that we can currently observe (let’s call it “the observable patch” of the universe) was subjected to an extraordinary event, called “inflation”.

We suspect it. We have some considerable evidence. We’re looking for more evidence. We might learn more about this any day now. Maybe today’s our day.

Stay tuned for the announcement of a “Major Discovery” out of the Harvard-Smithsonian Center for Astrophysics later today.  And then stay further tuned for the community’s interpretation of its reliability.

Getting Ready for the Cosmic News

As many of you know already, we’re expecting some very significant news Monday, presumably from the BICEP2 experiment.  The rumors seem to concern a possible observation of “B-mode polarization in the cosmic microwave background radiation”, which, to the person on the street, could mean:

It would also be cool for at least one other reason: it would be yet another indirect detection of gravitational waves, which are predicted in Einstein’s theory of gravity (but not Newton’s), just as electromagnetic waves were predicted by Maxwell’s theory of electricity and magnetism.  Note, however, it would not be the first such indirect detection; that honor belongs to this Nobel-Prize-winning measurement of the behavior of a pair of neutron stars which orbit each other, one of which is a pulsar.  (Attempts at direct detection are underway at LIGO.)

Of course, it’s possible the rumors aren’t correct, and that the implications will be completely different from what people currently expect.  But the press release announcing the Monday press conference specifically said “significant discovery”, so at least it will be interesting, one way or the other.

If you have no idea, or a limited idea, of what I just said, or if you’re not sure you have all the issues straight about the universe’s history and what “Big Bang” means, fear not: I have written the History of the Universe, designed for the non-expert.  Well, not all of the history, or all of the universe either, but the parts you’re going to want to know about for Monday’s announcement.  Those of you who are still awake are invited to read what I’ve put together and send comments about the parts that are unclear or any aspects that look incorrect.  I’ll have another post in the morning hours, and then the big announcement takes place just after noon, East Coast time.

Why You Can’t Easily Dismiss the Cosmological Constant Problem

I’m still early on in my attempts to explain the “naturalness problem of the Standard Model” and its implications.  A couple of days ago I explained what particle physicists mean by the term “natural” — it means “typical” or “generic”.  And I described how, at least from one naive point of view, the Standard Model (the equations we use to describe the known elementary particles and forces) is unnatural.  Indeed any theory is unnatural that has a

  • a spin-zero particle (in the Standard Model, the newly discovered Higgs particle), which
  • is very lightweight in the following sense: it has a very very low mass-energy compared to the energy at which gravity becomes a strong force, and which
  • isn’t accompanied (in the Standard Model specifically) by other related particles that also have small masses.

But I didn’t actually explain any of this yet; I just described it.

Specifically, I didn’t start yet to explain what causes the Standard Model to be unnatural.  This is important to do, because, as many attentive readers naturally complained, my statements about the unnatural aspect of the Standard Model was based on a rather arbitrary-sounding statistical argument, and story-telling, which is hardly enough for scientific discussion.  Patience; I’ll get there, not today but probably the next installment after today’s.

To see why the argument I gave is actually legitimate (which doesn’t mean it is right, but if it’s wrong it’s not for a simple reason you’ll think of in five minutes), it is necessary to look in a little bit more detail at one of the most fundamental aspects of quantum field theory: quantum fluctuations, and the energy they carry.  So for today I have written an article about this, reasonably complete.

Be prepared — the article runs headlong into the only naturalness problem in particle physics that is worse than the naturalness problem of the Standard Model (the one I wrote about on Tuesday)!  I am referring to the “cosmological constant problem”.  In a nutshell:

  • we can calculate that, in any typical quantum field theory with gravity, the amount of energy in empty space (often called `dark energy’) should be huge, and we know of no way to avoid having it in a typical somewhat-realistic theory of the universe,
  • yet measurements of the cosmos — in fact, the very existence of a large and old universe — assure that, if Einstein’s theory of gravity is basically right, then instead of a huge amount of `dark energy’, there’s just a very small amount — not much more than the total amount of mass-energy [E=mc² energy] found in all the matter that’s scattered thinly throughout the universe.

After you’ve read about quantum fluctuations and the cosmological constant problem, and have a bit of a sense as to why it is so hard to make it go away, we can go back to the Standard Model, and try to understand the naturalness problem that is associated with the Higgs particle and field.  It all has to do with another aspect of quantum fluctuations — the fact that their energy depends on, and therefore helps determine, the average value of the Higgs field.