It’s (not) The End of the World

The December solstice has come and gone at 11:11 a.m. London time (6:11 a.m New York time). That’s the moment when the north pole of the Earth points most away from the sun, and the south pole points most toward it. Because it’s followed by a weekend and then Christmas Eve, it marks the end … Read more

The First Human-Created Higgs-Like Particle: 1988 or 89, at the Tevatron

Yesterday’s Quiz Question: when was the first Higgs particle produced by humans? (where admittedly “Higgs” should have read “Higgs-like”) got many answers, but not the one I think is correct. Here’s what I believe is the answer.

——

[UPDATE: After this post was written, but before it went live, commenter bobathon got the right answer — at 6:30 Eastern, just under the wire! Well done!]

The first human-produced Higgs particle [more precisely, the Higgs-like particle with a mass of about 125 GeV/c2 whose discovery was reported earlier this month, and which I’ll refer to as “`H”– but I’ve told you why I think it is a Higgs of some sort] was almost certainly created in the United States, at the Fermilab National Accelerator Center outside Chicago. Back in 1988 and 1989, Fermilab’s accelerator called the Tevatron created collisions within the then-new CDF experiment, during the often forgotten but very important “Run Zero”.  The energy per collision, and the total data collected, were just enough to make it nearly certain that an H particle was created during this run.

Run Zero, though short, was important because it allowed CDF to prove that precision mass measurements were possible at a proton collider.  They made a measurement of the Z particle’s mass that almost rivaled the one made simultaneously at the SLC electron-positron collider.  This surprised nearly everyone. [Unfortunately I was out of town and missed the scene of disbelief, back in 1989, when CDF dropped this bombshell during a conference at SLAC, the SLC’s host laboratory.] Nowadays we take it for granted that the best measurement of the W particle’s mass comes from the Tevatron experiments, and that the Large Hadron Collider [LHC] experiments will measure the H particle’s mass to better than half a percent — but up until Run Zero it was widely assumed to be impossible to make measurements of such quality in the messy environment of collisions that involve protons.

Anyway, it is truly astonishing that we have to go back to 1988-1989 for the first artificially produced Higgs(-like) particle!! I was a first-year graduate student, and had just learned what Higgs particles were; precision measurements of the Z particle were just getting started, and the top quark hadn’t been found yet. It took 23 years to make enough of these Higgs(-like) particles to convince ourselves that they were there, using the power of the CERN laboratory’s Large Hadron Collider [LHC]!

[Perhaps this remarkable history will help you understand why I keep saying that although the LHC experiments haven’t yet found something unexpected in their data, that absolutely doesn’t mean that nothing unexpected is there. What’s new just may be hard to see, waiting to be noticed with more sophisticated methods and/or more data.]

Read more

Taking Stock: Where is the Higgs Search Now?

Today, we got new information at the Moriond conference on the search for the Higgs particle (in particular, Phase 1 of the search, which involves the search for the simplest possible Higgs particle, called the “Standard Model Higgs”) from the Tevatron and the Large Hadron Collider [LHC], the Tevatron’s successor.  With those results in hand, and … Read more

Higgs Results from The First Week of the Moriond Conference

[UPDATE: Tevatron results start a few paragraphs down; LHC results will appear soon] [2nd UPDATE: ATLAS  new results added: the big unexpected news.   As far as I can tell CMS, which got its results out much earlier in the year, didn’t add anything very new in its talk today.] [3rd UPDATE: some figures from … Read more

Awaiting Higgs News from the Tevatron Experiments

The search for the Higgs particle has been dominated recently by the new kids on the block, the ATLAS and CMS experiments at the Large Hadron Collider [LHC], who benefit from the LHC’s record high energy per collision. But at its predecessor, the now-closed Tevatron, the CDF and DZero experiments still have a few tricks up their sleeves. Though the energy per collision in recent years at the Tevatron was 3.5 times smaller than was the LHC’s  in 2011,  CDF and DZero have twice as much data as do ATLAS and CMS right now. And there’s one more thing going for them. In contrast to the LHC, where protons collide with protons, at the Tevatron protons collided with antiprotons. That gives the Tevatron a little edge in one particular search mode for the Higgs. It won’t be enough to beat the LHC at the game for which it was designed, but it’s enough that the Tevatron experiments can at least play. And we’ll see results from the two experiments tomorrow (Wednesday) — with a preview already publicly available, as you’ll see below.

Read more

News from La Thuile, with Much More to Come

At various conferences in the late fall, the Large Hadron Collider [LHC] experiments ATLAS and CMS showed us many measurements that they made using data they took in spring and summer of 2011. But during the fall their data sets increased in size by a factor of two and a half!  So far this year the only … Read more

LHCb’s Result From November Appears Confirmed by CDF

Back in November, I described a surprising result from the LHCb experiment at the Large Hadron Collider [LHC] concerning “CP violation” in the decays of particles called “D mesons” (which are hadrons that contain an unpaired charm quark or an unpaired charm antiquark) at a level much larger than expected by theorists.  Rather than rehashing the explanation … Read more

%d