A Big Think Made of Straw: Bad Arguments Against Future Colliders

Here’s a tip.  If you read an argument either for or against a successor to the Large Hadron Collider (LHC) in which the words “string theory” or “string theorists” form a central part of the argument, then you can conclude that the author (a) doesn’t understand the science of particle physics, and (b) has an absurd caricature in mind concerning the community of high energy physicists.  String theory and string theorists have nothing to do with whether such a collider should or should not be built.

Such an article has appeared on Big Think. It’s written by a certain Thomas Hartsfield.  My impression, from his writing and from what I can find online, is that most of what he knows about particle physics comes from reading people like Ethan Siegel and Sabine Hossenfelder. I think Dr. Hartsfield would have done better to leave the argument to them. 

An Army Made of Straw

Dr. Hartsfield’s article sets up one straw person after another. 

  • The “100 billion” cost is just the first.  (No one is going to propose, much less build, a machine that costs 100 billion in today’s dollars.)  
  • It refers to “string theorists” as though they form the core of high-energy theoretical physics; you’d think that everyone who does theoretical particle physics is a slavish, mindless believer in the string theory god and its demigod assistant, supersymmetry.  (Many theoretical particle physicists don’t work on either one, and very few ever do string theory. Among those who do some supersymmetry research, it’s often just one in a wide variety of topics that they study. Supersymmetry zealots do exist, but they aren’t as central to the field as some would like you to believe.)
  • It makes loud but tired claims, such as “A giant particle collider cannot truly test supersymmetry, which can evolve to fit nearly anything.”  (Is this supposed to be shocking? It’s obvious to any expert. The same is true of dark matter, the origin of neutrino masses, and a whole host of other topics. Its not unusual for an idea to come with a parameter which can be made extremely small. Such an idea can be discovered, or made obsolete by other discoveries, but excluding it may take centuries. In fact this is pretty typical; so deal with it!)
  • “$100 billion could fund (quite literally) 100,000 smaller physics experiments.”  (Aside from the fact that this plays sleight-of-hand, mixing future dollars with present dollars, the argument is crude. When the Superconducting Supercollider was cancelled, did the money that was saved flow into thousands of physics experiments, or other scientific experiments?  No.  Congress sent it all over the place.)  
  • And then it concludes with my favorite, a true laugher: “The only good argument for the [machine] might be employment for smart people. And for string theorists.”  (Honestly, employment for string theorists!?!  What bu… rubbish. It might have been a good idea to do some research into how funding actually works in the field, before saying something so patently silly.)

Meanwhile, the article never once mentions the particle physics experimentalists and accelerator physicists.  Remember them?  The ones who actually build and run these machines, and actually discover things?  The ones without whom the whole enterprise is all just math?

Although they mostly don’t appear in the article, there are strong arguments both for and against building such a machine; see below.  Keep in mind, though, that any decision is still years off, and we may have quite a different perspective by the time we get to that point, depending on whether discoveries are made at the LHC or at other experimental facilities.  No one actually needs to be making this decision at the moment, so I’m not sure why Dr. Hartsfield feels it’s so crucial to take an indefensible position now.

Read more

Celebrating 2/22/22 (or was it 22/2/22)?

I hope you all had a good Twosday. Based on what I saw on social media, yesterday was celebrated widely in many parts of the world that use Pope Gregory’s calendar. I had two sandwiches to in honor of the date, and two scoops of ice cream. In the United States, the joy continues today, … Read more

Why Simple Explanations of Established Facts Have Value

I’ve received various comments, in public and in private, that suggest that quite a few readers are wondering why a Ph.D. physicist with decades of experience in scientific research is spending time writing blog posts on things that “everybody knows.”  Why discuss unfamiliar but intuitive demonstrations of the Earth’s shape and size, and why point out new ways of showing that the Earth rotates?  Where’s all the discussion of quantum physics, black holes, Higgs bosons, and the end of the universe?

One thing I’m not doing is trying to convince flat-earthers!  A flat-earther’s view of the world is so full of conceptual holes that there’s no chance of filling them.  Such an effort would be akin to trying to convince a four-year-old Santa Claus devotee that the jolly fellow can’t actually fly through the air and visit half a billion homes, stopping to eat the cookies left for him in every one, all in one night.  Logic has no power on a human whose mind is already made up.  (If you’re an adult, don’t be that human.)

Instead my goals are broader, and more contemplative than corrective.   Here are a few of them.

Read more

The Best Proof that the Earth Spins

In my last post I gave you a way to check for yourself, using observations that are easy but were unavailable to ancient scientists, that the Earth is rotating from west to east. The clue comes from the artificial satellites and space junk overhead. You can look for them next time you have an hour or so under a dark night sky, and if you watch carefully, you’ll see none of them are heading west. Why is that? Because of the Earth’s rotation. It is much more expensive to launch rockets westward than eastward, so both government agencies and private companies avoid it.

In this post I want to describe the best proof I know of that the Earth rotates daily, using something else our ancestors didn’t have. Unlike the demonstration furnished by a Foucault pendulum, this proof is clear and intuitive, involving no trigonometry, no complicated diagrams, and no mind-bending arguments.

The Magic Star-Pointing Wand

Let’s start by imagining we owned something perfect (almost) for demonstrating that the Earth is spinning daily. Suppose we are given a magic wand, with an amazing occult power: if you point it at a distant star, any star (excepting the Sun), from any location on the Earth, it will forever stay pointed at that star. Just think of all the wonderful things you could do with this device!

Read more

How Can You Check that the Earth Spins?

Well, now that we’ve seen how easily anyone who wants to can show the Earth’s a sphere and measure its size — something the classical Greeks knew how to do, using slightly more subtle methods — it’s time to face a bigger challenge that the classical Greeks never figured out. How can we check, and confirm, that the Earth is spinning daily, around an axis that passes through the north and south poles?

We definitely need techniques and knowledge that the Greeks didn’t have; the centuries of Greek astronomy included many great thinkers who were too smart to be easily fooled. The problem, fundamentally, is that it is not obvious in daily life that the Earth is spinning — we don’t feel it, for reasons worthy of a future discussion — and it’s not obvious in astronomy either, because it is hard to tell the difference between the Earth spinning versus the sky spinning. In fact, if it’s the sky that’s spinning, it’s clear why we don’t feel the motion of the Earth’s spin, whereas if the Earth is spinning then you will need to explain why we don’t feel any sense of motion. Common sense tells us that we, and the Earth, are stationary. So even though many people over the centuries did propose the Earth is spinning, it was very hard for them to convince anyone; they had neither the right technology nor a coherent understanding of basic physics.

Broken Symmetry

One way to differentiate a rotating Earth from a non-rotating one is to focus on the notion of symmetry. On a non-rotating featureless ball, even if we define it to have north and south poles, there’s no difference between East and West. There’s a symmetry: if you look at a mirror image of the ball, West and East are flipped, but there’s nothing about the ball that looks any different.

Read more

The Earth’s Shape and Size? You Can Measure it Yourself — Part 1

This week, I’ll describe how one can easily use the Jan 15th explosive volcanic eruption in Tonga to obtain strong evidence that the Earth’s a sphere and determine its circumference, using nothing more than simple arithmetic.   This illustration of scientific measurement is perfect for any science classroom, because it uses publicly accessible data, is … Read more

Geometry From Within: Evidence for a Round Earth

It’s a lot easier to map the Earth than it used to be.  Before satellites, you had to do many careful measurements of distances and directions, at many different locations around the world, and combine them all to build a picture of a world you couldn’t see.  That’s part of why maps and globes made … Read more

%d bloggers like this: