Of Particular Significance

As many of you have already read, there is a supernova that has gone off in a relatively nearby galaxy, and with a rather small telescope, you can see it.  And if you can find the host galaxy, M82 [often called the “cigar”, not because it is really shaped like a cigar but because it looks like one from the angle at which we see it], you can’t miss the supernova.  Like most supernovas, it’s as bright as the entire galaxy that it’s sitting in.  It will probably get a bit brighter for the next week before gradually dimming.

This supernova is of Type Ia. (There was a similar one, just a little further away, two years ago, in the galaxy M101.) This is not to be confused with a Type II supernova, in which the core of a big star, at the end of its life, runs out of fuel, collapses and explodes.  In a Type 1a, two stars, one a white dwarf (a very old star which has run out of fuel and ceased to burn, but not big enough to collapse and explode), the other a red giant (a bit younger but also old, cool and large), orbit one another.  Over time the white dwarf accumulates material from the red giant, and eventually the temperature and pressure on the white dwarf reach a critical point that causes a nuclear explosion, destroying the star in an explosion we can see well across the universe.  Or so the story goes; it’s a very plausible story, but there are details still needing clarification.

Importantly, Type Ia supernovas are quite regular (though precisely how regular is under study, and I’m sure this one will provide us with more information how about these objects work) and can therefore be used to figure out, on average, roughly how far away a host galaxy is.  This information was critical in the discovery that the universe’s expansion is accelerating rather than slowing down, i.e. in the definitive discovery of “dark `energy’ ”, also known as the cosmological constant (if it’s really in fact constant.)

M82 is about 12 million light years away, so that’s how long ago this supernova exploded; the light’s been traveling out from M82, in all directions, for 12 million years, and just reached Earth this month.  For scale, that’s about 0.1% of the age of the universe.  And it also means that this supernova is about 70 times further away than was Supernova 1987a, the bright one visible with the naked eye in the Large Magellanic Cloud (one of the satellite galaxies of our own galaxy, the Milky Way.)

A nice post which tells you more about the discovery and where to find M82 in the sky (it’s not far from the Big Dipper) can be found here.  While you’re looking, check out M81 too; no supernova there, but it’s a notable and photogenic galaxy right next to M82.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 24, 2014

Last year, in a series of posts, I gave you a tour of quantum field theory, telling you some of what we understand and some of what we don’t. I still haven’t told you the role that string theory plays in quantum field theory today, but I am going to give you a brief tour of string theory before I do.

What IS String Theory? Well, what’s Particle Theory?

What is particle theory? It’s nothing other than a theory that describes how particles behave.  And in physics language, a theory is a set of equations, along with a set of rules for how the things in those equations are related to physical objects.  So a particle theory is a set of equations which can be used to make predictions for how particles will behave when they interact with one another.

Now there’s always space for confusion here, so let’s be precise about terminology.

  • “Particle theory” is the general category of the equations that can describe particles, of any type and in any combination.
  • A particle theory” is a specific example of such equations, describing a specific set of particles of specific types and interacting with each other in specific ways.

For example, there is a particle theory for electrons in atoms. But we’d need a different one for atoms with both electrons and muons, or for a bottom quark moving around a bottom anti-quark, even though the equations would be of a quite similar type.

Most particle theories that one can write down aren’t relevant (or at least don’t appear to be relevant) to the real world; they don’t describe the types of particles (electrons, quarks, etc.) that we find (so far) in our own universe.   Only certain particle theories are needed to describe aspects of our world.  The others describe imaginary particles in imaginary universes, which can be fun, or even informative, to think about.

Modern particle theory was invented in the early part of the 20th century in response to — guess what? — the discovery of particles in experiments. First the electron was discovered, in 1897; then atomic nuclei, then the proton, then the photon, then the neutrino and the neutron, and so on… Originally, the mathematics used in particle theory was called “quantum mechanics”, a set of equations that is still widely useful today. But it wasn’t complete enough to describe everything physicists knew about, even at the time. Specifically, it couldn’t describe particles that move at or near the speed of light… and so it wasn’t consistent with Einstein’s theory (i.e. his equations) of relativity.

What is Quantum Field Theory?

To fix this problem, physicists first tried to make a new version of particle theory that was consistent with relativity, but it didn’t entirely work.  However, it served as an essential building block in their gradual invention of what is called quantum field theory, described in much more detail in previous posts, starting here. (Again: the distinction between “quantum field theory” and “a quantum field theory” is that of the general versus the specific case; see this post for a more detailed discussion of the terminology.)

In quantum field theory, fields are the basic ingredients, not particles. Each field takes a value everywhere in space and time, in much the same way that the temperature of the air is something you can specify at all times and at all places in the atmosphere. And in quantum field theory, particles are ripples in these quantum fields.

More precisely, a particle is a ripple of smallest possible intensity (or “amplitude”, if you know what that means.)  For example, a photon is the dimmest possible flash of light, and we refer to it as a “particle” or “quantum” of light.

We call such a “smallest ripple” a “particle” because in some ways it behaves like a particle; it travels as a unit, and can’t be divided into pieces.  But really it is wave-like in many ways, and the word “quantum” is in some ways better, because it emphasizes that photons and electrons aren’t like particles of dust.

To sum up:

  • particles were discovered in experiments;
  • physicists invented the equations of particle theory to describe their behavior;
  • but to make those equations consistent with Einstein’s special relativity (needed to describe objects moving near or at the speed of light) they invented the equations of quantum field theory, in which particles are ripples in fields.
  • in this context the fields are more fundamental than the particles; and indeed it was eventually realized that one could (in principle) have fields without particles, while the reverse is not true in a world with Einstein’s relativity.
  • thus, quantum field theory is a more general and complete theory than particle theory; it has other features not seen in particle theory.

Now what about String Theory?

In some sense, strings also emerged from experiments — experiments on hadrons, back before we knew hadrons were made from quarks and gluons.  The details are a story I’ll tell soon and in another context. For now, suffice it to say that in the process of trying to explain some puzzling experiments, physicists were led to invent some new equations, which, after some study, were recognized to be equations describing the quantum mechanical behavior of strings, just as the equations of particle theory describe the quantum mechanical behavior of particles.  (One advantage of the string equations, however, is that they were, from the start, consistent with Einstein’s relativity.) Naturally, at that point, this class of equations was named “string theory”. (more…)

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 23, 2014

If you have a clear sky, don’t forget to look overhead tonight!  And go get your binoculars or small telescope…

After an overnight flight and a train that brought me to Florence (Firenze), Italy, where I’ll be teaching this week, I decided to fight off sleep by taking a walk down into the city and wandering around for a while.  It was a beautiful evening, with deep blue twilight.  And it wasn’t long before the planet Jupiter, and then the full Moon, rose above the buildings and high into the sky.  I caught a photo of them, between the Duomo (cathedral) and its campanile (bell tower).  Jupiter is the little white dot directly above the moon, at the top of the second set of windows on the campanile.

MoonJupiterOverDuomo
The Moon and Jupiter (tiny dot well above the Moon) shine between the Duomo of Florence (left) and its Campanile. Photo credit: Matt Strassler

I then pulled out my binoculars, which aren’t quite as powerful as Galileo’s telescope was 400 years ago, but are still enough to reveal what Galileo discovered.  Just as Galileo (and his competitor Thomas Herriot) did in 1609, I could see all sorts of structure to the Moon’s surface, including what we now know are basalt plains, and hints of impact craters.  [Admittedly, impact craters and mountains are actually easiest to see when the Moon isn’t full, because then the shadows that mountains cast are longer.]

And looking at Jupiter, which is relatively close to Earth right now, I could easily see that it was a disk, not a dot like a star, and that there are three dim dots, sitting in a line that passes through the planet.  These are three of Jupiter’s four large moons: Callisto, Ganymede, Europa and Io.  [The fourth one might well be visible if you’re lucky and have good eyes and good timing.]  If you watch them day by day, they will change position, a fact that Galileo used to guess they were moons orbiting Jupiter.

So if you have good weather, tonight’s a great opportunity for some simple but very satisfying astronomy.  Don’t miss the naked-eye view that’s on offer right now or in a few hours, depending on where you reside.  And if you’ve got binoculars handy, you can relive Galileo’s remarkable discoveries about the Moon and Jupiter, and contemplate how the first telescopes forever changed the way humans envisioned their cosmos.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 15, 2014

Professors at research universities engage in many different activities, and one which is little known to the public involves teaching at short and focused “schools” for graduate students. These schools, which generally last one to four weeks, and are usually (but not always) held outside the main academic year in winter or summer, allow these students to learn advanced topics in short courses that their universities wouldn’t be able to offer.

For instance, at most universities in the United States, a course focused on the theory of quarks and gluons (the set of equations known as “QCD”) would be attended by just a few students. And many universities don’t even have a professor who is truly expert on this subject. But when interested students from many universities are brought together at one of these specially organized schools, a world’s expert on QCD can teach a group of students as large as fifty or more. Not only is there economy of scale in this arrangement, it also helps to foster a future community among the students who attend. I myself went to one such school when I was a graduate student, and the faculty and students I met there include a number who are my professional peers today.

Usually, professors are not paid to teach at these schools, even though preparing a course is often a huge amount of work. There are two inducements, other than the satisfaction derived from the teaching itself. The first is that travel and lodging are free for the teacher; they are paid for by the organizers of the school, who in turn get the required funds from their university and/or government organizations. The latter (wisely, in my opinion) see such schools as having national value, in that they help assure a strong national research community in the future. The second is that the schools are often held in places where a person would not regret spending a week. The schools at which I have taught over the years have occurred in Boulder, Colorado (USA); Vancouver, British Columbia (Canada); Fermilab National Lab in Aurora, Illinois (USA); Cambridge, England; Kyoto, Japan; and Varna, Bulgaria. I’ve also taught in Italy, previously in the towns of Trieste and Erice, and this month in Florence (i.e. Firenze). For the next ten days or so, I’ll be at the Galileo Galilei Institute for Theoretical Physics (GGI), which is named, of course, after Florence’s most famous scientist.

(Several of my previous short courses are available in written or video form, and most are still sufficiently up-to-date to be useful to future experts. All of them assume, at least in large part, that a student has had a beginning course in quantum field theory. I can provide some links later this week if there is interest, though most of them easily show up in a web search.)

This is my first visit to the GGI, which is associated with the University of Florence, and is located on a hill a couple of miles from downtown Florence, not very far from where Galileo himself lived for some years. It was founded around 2006 to host focused research workshops, as well as brief schools. The theoretical particle physics graduate students at this school have already learned about dark matter from Tomer Volansky (a collaborator of mine on a trigger-related project), and about supersymmetry from David Shih (a former colleague at Rutgers and a recent collaborator on a supersymmetry/LHC project.) They’ll also be learning about the Higgs phenomenon and its generalizations from Raman Sundrum (who’s been mentioned many times on this blog, and whom I visited last month); about the physics of “flavor” — including the issue of how the six different types quarks transition from one to another via the weak nuclear force — from Gino Isidori; and about the physics of quarks and gluons from one of the world’s great experts, Stefano Catani. (You may not recognize these names, as none of them have written books for the public or developed a popular website or blog; but any expert in the theoretical particle physics knows them very well.) And last and perhaps least, they’ll be learning various bits of particle physics that one ought to know in the context of particle colliders, and particularly of the Large Hadron Collider [LHC], from me.

One corollary of this news is that I’ll be pretty busy for the next ten days, so I’m not sure how active the blog will really be. But I can promise you at least one post on string theory!

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 15, 2014

Baloney.  Hogwash.  Garbage.

That’s what’s to be found in the phys.org news article claiming that “Scientists at Towson University in Towson, Maryland, have identified a practical, yet overlooked, test of string theory based on the motions of planets, moons and asteroids, reminiscent of Galileo’s famed test of gravity by dropping balls from the Tower of Pisa.”

Sounds too good to be true, right?  And it is.

What the scientists have done (or at least claim to have done, and I’ll be happy to take their claims at face value, since I can’t easily check them) is carry out  a technique to test the equivalence principle, a foundation stone of Einstein’s theory of gravity, which implies that all objects, no matter what material they are made of and no matter how heavy they are, will be pulled by gravity in the same way… with the same acceleration.  This principle, in Einstein’s theory, lies behind why all objects on earth fall with the same acceleration (when air resistance can be neglected), and behind why astronauts float in their space stations.

By looking at the precisely measured orbits of different objects in the solar system, which are made from different materials, the authors (James Overduin, Jack Mitcham and Zoey Warecki of little-known Towson University) claim in their July 2013 paper to have provided new tests that the equivalence principle applies to different materials.  That’s very nice work.  The principle works to the precision reached by their tests — which aren’t as precise as some other types of tests, but do explore some domains that haven’t previously been explored.

But what’s that got to do with string theory?  If you read their paper, you will notice that the word “String Theory” appears in only one obscure sentence in the introduction, referring to a very specific form of string theory [with an extremely light spin-zero field, called the dilaton], implying that their work might be relevant for string theory if we lived in a stringy universe that had such a field.  Not even the conclusion, much less the bulk of the paper, mentions strings or string theory.  That’s because the paper has nothing to do with testing string theory; it is merely testing Einstein’s theory of gravity. 

The reason it can’t test string theory is

  1. String theory doesn’t make a precise prediction for how the equivalence principle will be modified, and among the many possible universes string theory can lead to, many have no measurable modification of the equivalence principle;
  2. Even if a violation of the equivalence principle had been detected, or is detected in the future, it isn’t necessarily due to string theory.  It might be due to some other modification of Einstein’s gravity — in fact, the authors consider one such modification in their paper!

So here we have a nice little paper that tests Einstein’s theory of gravity and puts constraints on various alternatives to it — though none of those alternatives is unique to string theory nor is uniquely predicted by string theory.  How did this get billed as a practical test of string theory?

You’ll have to ask the author of the phys.org article, which appears to be a Towson University press release.  [“Provided by Towson University”, says the last line of the phys.org article.] Or you’ll have to ask the scientists involved (unless one of them is the author) — who ought to be pretty darned embarrassed that their work was billed in this way.  I hope they didn’t do this on purpose.  It’s certainly great free advertising for Towson University; who cares if the article’s right if people are willing to read it?  But a willingness to distort the facts to impress and mislead the public is not a worthy attribute.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 13, 2014

Wow, it was unusually cold last week. In a small fraction of the globe. For a couple of days. And what does that cold snap, that big wiggle in the Polar Vortex that carries high-atmospheric winds around the North Pole, imply about “climate change”, also known as “global warming”, also known as “global weirding”?

The answer is very simple. Nothing.

If you heard anyone suggest otherwise — whether they said that the extreme cold implies that there is no global warming going on, or they said that the extreme cold implies that global warming is happening — you should seriously question anything that person says when it comes to climate change. Because that person does not respect (or perhaps even understand) the difference between anecdote and evidence; between weather and climate; between a large fluctuation and a small but long-term trend. Or between media hoopla and science.

In the interest of an imperfect analogy: Let me ask you this. Are you generally happier, or less happy, than you were five years ago? Answer this as best you can.

Now let me ask you another question. Did you, within the last month, have a really, really bad day, or a really, really good one?

Does the answer to the second question have much to do with the answer to the first one?

Barring an exceptional recent disaster in your personal or professional life, the fact that, say, last Thursday your car broke down, you locked yourself out of your house, your dog vomited on the carpet and you got caught in the rain without your umbrella does not have anything to do with whether you are a happier person than you were five years ago. Being a happier person has more to do with whether you have a better job, a happier family, a better sense of self-esteem, and things like that. And even if you love your job, you know there are going to be really bad days in the office sometimes. That’s just the way it goes. We all know that.

It’s the same with daily and monthly and yearly fluctuations in the stock market compared to the slow but fairly steady century-long growth of the U.S. economy (both curves corrected for inflation.)

So why, when there’s a big fluctuation in the daily, monthly or even seasonal weather, do people jump up and down about what the implications are for the long-term trends in climate? (more…)

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 13, 2014

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.