During that wild day or two following the announcement, a number of scientists stated that this was “the first direct observation of gravitational waves”. Others, including me, emphasized that this was an “indirect observation of gravitational waves.” I’m sure many readers noticed this discrepancy. Who was right?
No one was wrong, not on this point anyway. It was a matter of perspective. Since I think some readers would be interested to understand this point, here’s the story, and you can make your own judgment. (more…)
Our quantum world has many odd and counter-intuitive features. One of these is “tunneling” — the ability of objects to pass through walls, escape from traps, and slip under mountains into the next valley. We don’t encounter this effect in daily life; objects we’re used to are so incredibly unlikely to tunnel from one place to another that we will never hear of one doing the apparently impossible. But in the atomic and subatomic realms, even in various types of modern technology, tunneling is an essential and commonplace feature of the quantum reality in which we live.
I’ve written a short article about this phenomenon, which you can read here, emphasizing the central role that tunneling plays in the world’s most powerful microscopes. It should be suitable for anyone who has read a little about atoms.
This article lays the groundwork for a discussion of how tunneling could someday, in the distant future, end the universe as we know it. It also prepares the way for a more advanced post about how a single physics theory (i.e., a set of equations designed to describe some aspect of nature) may have multiple `vacua’ (i.e. multiple solutions that each represent different ways that the universe could be configured — what empty space could be like, and what types of fields, forces and particles could be found in the universe — over long periods of time.) If that’s confusing, stay tuned for a few days; I’ll soon explain it.
Overnight, those of you in the Americas and well out into the Pacific Ocean, if graced with clear skies, will be able to observe what is known as “a total eclipse of the Moon” or a “lunar eclipse”. The Moon’s color will turn orange for about 80 minutes, with mid-eclipse occurring simultaneously in all the areas in which the eclipse is visible: 3:00-4:30 am for observers in New York, 12:00- 1:30 am for observers in Los Angeles, and so forth. [As a bonus, Mars will be quite near the Moon, and about as bright as it gets; you can’t miss it, since it is red and much brighter than anything else near the Moon.]
Since the Moon is so bright, you will be able to see this eclipse from even the most light-polluted cities. You can read more details of what to look for, and when to look for it in your time zone, at many websites, such as http://www.space.com/25479-total-lunar-eclipse-2014-skywatching-guide.html However, many of them don’t really explain what’s going on.
One striking thing that’s truly very strange about the term “eclipse of the Moon” is that the Moon is not eclipsed at all. (more…)
It’s been a quiet couple of weeks on the blog, something which often indicates that it’s been anything but quiet off the blog. Such was indeed the case recently.
For one thing, I was in Canada last week. I had been kindly invited to give two talks at the University of Western Ontario, one of Canada’s leading universities for science. One of the talks, the annual Nerenberg lecture (in memory of Professor Morton Nerenberg) is intended for the general public, so I presented a lecture on The 2013 Nobel Prize: The 50-Year Quest for the Higgs Boson. While I have given a talk on this subject before (an older version is on-line) I felt some revisions would be useful. The other talk was for members of the applied mathematics department, which hosts a diverse group of academics. Unlike a typical colloquium for a physics department, where I can assume that the vast majority of the audience has had university-level quantum mechanics, this talk required me to adjust my presentation for a much broader scientific audience than usual. I followed, to an extent, my website’s series on Fields and Particles and on How the Higgs Field Works, both of which require first-year university math and physics, but nothing more. Preparation of the two talks, along with travel, occupied most of my free time over recent days, so I haven’t been able to write, or even respond to readers’ questions, unfortunately.
I also dropped in at Canada’s Perimeter Institute on Friday, when it was hosting a small but intense one-day workshop on the recent potentially huge discovery by the BICEP2 experiment of what appears to be a signature of gravitational waves from the early universe. This offered me an opportunity to hear some of the world’s leading experts talking about the recent measurement and its potential implications (if it is correct, and if the simplest interpretation of it is correct). Alternative explanations of the experiment’s results were also mentioned. Also, there was a lot of discussion about the future, both the short-term and the long-term. Quite a few measurements will be made in the next six to twelve months that will shed further light on the BICEP2 measurement, and on its moderate conflict with the simplest interpretation of certain data from the Planck satellite. Further down the line, a very important step will be to reduce the amount of B-mode polarization that arises from the gravitational lensing of E-mode polarization, a method called “delensing”; this will make it easier to observe the B-mode polarization from gravitational waves (which is what we’re interested in) even at rather small angular scales (high “multipoles”). Looking much further ahead, we will be hearing a lot of discussion about huge new space-based gravitational wave detectors such as BBO [Big Bang Observatory]. (Actually the individual detectors are quite small, but they are spaced at great distances.) These can potentially measure gravitational waves whose wavelength is comparable to the size of the Earth’s orbit or even larger, which is still much smaller than those apparently detected by BICEP2 in the polarization of the cosmic microwave background. Anyway, assuming what BICEP2 has really done is discover gravitational waves from the very early universe, this subject now a very exciting future and there is lots to do, to discuss and to plan.
I wish I could promise to provide a blog post summarizing carefully what I learned at the conference. But unfortunately, that brings me to the other reason blogging has been slow. While I was away, I learned that the funding situation for science in the United States is even worse than I expected. Suffice it to say that this presents a crisis that will interfere with blogging work, at least for a while.
Familiar throughout our international culture, the “Big Bang” is well-known as the theory that scientists use to describe and explain the history of the universe. But the theory is not a single conceptual unit, and there are parts that are more reliable than others.
It’s important to understand that the theory — a set of equations describing how the universe (more precisely, the observable patch of our universe, which may be a tiny fraction of the universe) changes over time, and leading to sometimes precise predictions for what should, if the theory is right, be observed by humans in the sky — actually consists of different periods, some of which are far more speculative than others. In the more speculative early periods, we must use equations in which we have limited confidence at best; moreover, data relevant to these periods, from observations of the cosmos and from particle physics experiments, is slim to none. In more recent periods, our confidence is very, very strong.
History of the Universe, taken from my article with the same title, with added color-coded measures of how confident we can be in our understanding. In each colored zone, the degree of confidence and the observational/experimental source of that confidence is indicated. Three different possible starting points for the “Big Bang” are noted at the bottom; note that individual scientists may mean different things by the term. (Caution: there is a subtlety in the use of the words “Extremely Cold”; there are subtle quantum effects that I haven’t yet written about that complicate this notion.)
Notice that in the figure, I don’t measure time from the start of the universe. That’s because I don’t know how or when the universe started (and in particular, the notion that it started from a singularity, or worse, an exploding “cosmic egg”, is simply an over-extrapolation to the past and a misunderstanding of what the theory actually says.) Instead I measure time from the start of the Hot Big Bang in the observable patch of the universe. I also don’t even know precisely when the Hot Big Bang started, but the uncertainty on that initial time (relative to other events) is less than one second — so all the times I’ll mention, which are much longer than that, aren’t affected by this uncertainty.
I’ll now take you through the different confidence zones of the Big Bang, from the latest to the earliest, as indicated in the figure above.
Did the universe begin with a singularity? A point in space and/or a moment in time where everything in the universe was crushed together, infinitely hot and infinitely densely packed?
Doesn’t the Big Bang Theory say so?
Well, let me ask you a question. Did you begin with a singularity?
Let’s see. Some decades ago, you were smaller. And then before that, you were even smaller. At some point you could fit inside your mother’s body, and if we follow time backwards, you were even much smaller than that.
If we follow your growth curve back, it would be very natural — if we didn’t know anything about biology, cells, and human reproduction — to assume that initially you were infinitesimally small… that you were created from a single point!
But that would be wrong. The mistake is obvious — it doesn’t make sense to assume that the period of rapid growth that you went through as a tiny embryo was the simple continuation of a process that extends on and on into the past, back until you were infinitely small. Instead, there was a point where something changed… the growth began not from a point but from a single object of definite size: a fertilized egg.
The notion that the Universe started with a Big Bang, and that this Big Bang started from a singularity — a point in space and/or a moment in time where the universe was infinitely hot and dense — is not that different, really, from assuming humans begin their lives as infinitely small eggs. It’s about over-extrapolating into the past. (more…)