A quick note: I’ve had a number of questions from commenters about whether the new Higgs-like particle really has spin 0 (as it must if it is truly a Higgs particle) or whether it might have spin 2. Well, spin 2 (with positive parity) is now strongly disfavored, as a result of new results from the ATLAS and CMS experiments at the Large Hadron Collider. CMS has disfavored it at the 98.5-99.9% confidence level (the number depending on assumptions about whether the particle is produced in collisions of gluons or in collisions of a quark and anti-quark) using their data from the particle’s decays to two lepton/anti-lepton pairs. ATLAS has disfavored it at the 95%-99% confidence level (similarly depending on assumptions) using their data from decays of the new particle to a lepton, anti-lepton, neutrino and anti-neutrino. Meanwhile, there is no reason for a spin-2 particle (especially with negative parity) to have the relative decay probabilities that are observed in the data, so the fact that all these probabilities are similar to those of a simple Higgs particle disfavors spin 2 and favors spin 0. And there’s simply no theory of a spin-2 particle (with either parity) that doesn’t have other observable particles rather nearby in mass. No one of these arguments is definitive, but in combination they are pretty convincing.
Meanwhile all the data is consistent with a spin 0 particle with decay probabilities roughly similar to that of a Standard Model Higgs (the simplest type of Higgs particle.)
So let’s stop spending much bandwidth on spin 2: it is disfavored by both ATLAS and CMS — directly by measurement of the particle’s spin, and indirectly via its relative probabilities to decay to various types of particles — and it is disfavored theoretically. The more important measurement is to check whether this apparently spin-0 particle really has positive parity, or whether it has a mix of positive and negative parity.