Of Particular Significance

Author: Matt Strassler

Hope all of you had a good holiday and a good start to the New Year!

I myself continue to be extraordinarily busy as we move into 2015, but I am glad to say that some of that activity involves communicating science to the public.  In fact, a week from today I will be giving a public talk — really a short talk and a longer question/answer period — in Cambridge, just outside of Boston and not far from MIT. This event is a part of the monthly “CafeSci” series, which is affiliated with the famous NOVA science television programs produced for decades by public TV/Radio station WGBH in Boston.

Note for those of you have gone before to CafeSci events: it will be in a new venue, not far from Kendall Square. Here’s the announcement:

Tuesday, January 20th at 7pm (about 1 hour long)
Le Laboratoire Cambridge (NEW LOCATION)
http://www.lelaboratoirecambridge.com/
650 East Kendall St, Cambridge, MA

“The Large Hadron Collider Restarts Soon! What Lies Ahead?”

Speaker: Matthew Strassler

“After a long nap, the Large Hadron Collider [LHC], where the Higgs particle was discovered in 2012, will begin operating again in 2015, with more powerful collisions than before. Now that we know Higgs particles exist, what do we want to know about them? What methods can we use to answer our questions? And what is the most important puzzle that we are hoping the LHC will help us solve?”

Public Transit: Red line to Kendall Square, walk straight down 3rd Street, turn right onto Athenaeum Street, and left onto East Kendall

Parking: There is a parking deck – the 650 East Kendall Street Garage – accessible by Linskey Way.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON January 13, 2015

Triggering is an essential part of the Large Hadron Collider [LHC]; there are so many collisions happening each second at the LHC, compared to the number that the experiments can afford to store for later study, that the data about most of the collisions (99.999%) have to be thrown away immediately, completely and permanently within a second after the collisions occur.  The automated filter, partly hardware and partly software, that is programmed to make the decision as to what to keep and what to discard is called “the trigger”.  This all sounds crazy, but it’s necessary, and it works.   Usually.

Let me give you one very simple example of how things can go wrong, and how the ATLAS and CMS experiments [the two general purpose experiments at the LHC] attempted to address the problem.  Before you read this, you may want to read my last post, which gives an overview of what I’ll be talking about in this one.

Click here to read the rest of the article…

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 4, 2014

I’m a few days behind (thanks to an NSF grant proposal that had to be finished last week) but I wanted to write a bit more about my visit to CERN, which concluded Nov. 21st in a whirlwind of activity. I was working full tilt on timely issues related to Run 2 of the Large Hadron Collider [LHC], currently scheduled to start early next May.   (You may recall the LHC has been shut down for repairs and upgrades since the end of 2012.)

A certain fraction of my time for the last decade has been taken up by concerns about the LHC experiments’ ability to observe new long-lived particles, specifically ones that aren’t affected by the electromagnetic or strong nuclear forces. (Long-lived particles that are affected by those forces are easier to search for, and are much more constrained by the LHC experiments.  More about them some other time.)

This subject is important to me because it is a classic example of how the trigger systems at LHC experiments could fail us — whereby a spectacular signal of a new phenomena could be discarded and lost in the very process of taking and storing the data! If no one thinks carefully about the challenges of finding long-lived particles in advance of running the LHC, we can end up losing a huge opportunity, unnecessarily. Fortunately some of us are thinking about it, but we are small in number. It is an uphill battle for those experimenters within ATLAS and CMS [the two general purpose experiments at the LHC] who are working hard to make sure they have the required triggers available. I can’t tell you how many times people within the experiments — even at the Naturalness conference I wrote about recently — have told me “such efforts are hopeless”… despite the fact that their own experiments have actually shown, already in public and in some cases published measurements (including this, this, this, this, this, and this), that it is not. Conversely, many completely practical searches for long-lived particles have not been carried out, often because there was no trigger strategy able to capture them, or because, despite the events having been recorded, no one at ATLAS or CMS has had time or energy to actually search through their data for this signal.

Now what is meant by “long-lived particles”? (more…)

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON December 2, 2014

Greetings from the last day of the conference “Naturalness 2014“, where theorists and experimentalists involved with the Large Hadron Collider [LHC] are discussing one of the most widely-discussed questions in high-energy physics: are the laws of nature in our universe “natural” (= “generic”), and if not, why not? It’s so widely discussed that one of my concerns coming in to the conference was whether anyone would have anything new to say that hadn’t already been said many times.

What makes the Standard Model’s equations (which are the equations governing the known particles, including the simplest possible Higgs particle) so “unnatural” (i.e. “non-generic”) is that when one combines the Standard Model with, say, Einstein’s gravity equations. or indeed with any other equations involving additional particles and fields, one finds that the parameters in the equations (such as the strength of the electromagnetic force or the interaction of the electron with the Higgs field) must be chosen so that certain effects almost perfectly cancel, to one part in a gazillion* (something like 10³²). If this cancellation fails, the universe described by these equations looks nothing like the one we know. I’ve discussed this non-genericity in some detail here.

*A gazillion, as defined on this website, is a number so big that it even makes particle physicists and cosmologists flinch. [From Old English, gajillion.]

Most theorists who have tried to address the naturalness problem have tried adding new principles, and consequently new particles, to the Standard Model’s equations, so that this extreme cancellation is no longer necessary, or so that the cancellation is automatic, or something to this effect. Their suggestions have included supersymmetry, warped extra dimensions, little Higgs, etc…. but importantly, these examples are only natural if the lightest of the new particles that they predict have masses that are around or below 1 TeV/c², and must therefore be directly observable at the LHC (with a few very interesting exceptions, which I’ll talk about some other time). The details are far too complex to go into here, but the constraints from what was not discovered at LHC in 2011-2012 implies that most of these examples don’t work perfectly. Some partial non-automatic cancellation, not at one part in a gazillion but at one part in 100, seems to be necessary for almost all of the suggestions made up to now.

So what are we to think of this? (more…)

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON November 17, 2014

It wasn’t that long ago, especially by cometary standards, that humans viewed the unpredictable and spectacular arrival of a comet, its tail spread across the sky unlike any star or planet, as an obviously unnatural event. How could an object flying so dramatically and briefly through the heavens be anything other than a message from a divine force? Even a few hundred years ago…

Today a human-engineered spacecraft descended out of the starry blackness and touched one.

We have known for quite some time that our ancestors widely maligned these icy rocks, often thinking them messengers of death and destruction.  Yes, a comet is, at some level, not much more than an icy rock. Yet, heated by the sun, it can create one of our sky’s most bewitching spectacles. Actually two, because not only can a comet itself be a fabulous sight, the dust it leaves behind can give us meteor showers for many years afterward.

But it doesn’t stop there.  For comets, believed to be frozen relics of the ancient past, born in the early days of the Sun and its planets, may have in fact been messengers not of death but of life.   When they pummeled our poor planet in its early years, far more often than they do today, their blows may have delivered the water for the Earth’s oceans and the chemical building blocks for its biology.   They may also hold secrets to understanding the Earth’s history, and perhaps insights into the more general questions of what happens when stars and their planets form.  Indeed, as scientific exploration of these objects moves forward, they may teach us the answers to questions that we have not yet even thought to ask.

Will the Philae lander maintain its perch or lose its grip? Will it function as long as hoped? No matter what, today’s landing was as momentous as the first spacecraft touchdowns on the Moon, Venus, Mars, Titan (Saturn’s largest moon), and a small asteroid — and also, the first descent of a spacecraft into Jupiter’s atmosphere. Congratulations to those who worked so hard and so long to get this far! Now let’s all hope that they, and their spacecraft, can hang on a little longer.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON November 12, 2014

Day 2 of my visit to CERN (host laboratory of the Large Hadron Collider [LHC]) was a pretty typical CERN day for me. Here’s a rough sketch of how it panned out:

  • 1000: after a few chores, arrived at CERN by tram. Worked on my ongoing research project #1. Answered an email about my ongoing research project #2.
  • 1100: attended a one hour talk, much of it historical, by Chris Quigg, one of the famous experts on “quarkonium” (atom-like objects made from a quark or anti-quark, generally referring specifically to charm and bottom quarks). Charmonium (charm quark/antiquark atoms) was discovered 40 years ago this week, in two very different experiments.
  • 1200: Started work on the talk that I am giving on the afternoon of Day 3 to some experimentalists who work at ATLAS. [ATLAS and CMS are the two general-purpose experimental detectors at the LHC; they were used to discover the Higgs particle.] It involves some new insights concerning the search for long-lived particles (hypothesized types of new particles that would typically decay only after having traveled a distance of at least a millimeter, and possibly a meter or more, before they decay to other particles.)
  • 1230: Working lunch with an experimentalist from ATLAS and another theorist, mainly discussing triggering, and other related issues, concerning long-lived particles. Learned a lot about the new opportunities that ATLAS will have starting in 2015.
  • 1400: In an extended discussion with two other theorists, got a partial answer to a subtle question that arose in my research project #2.
  • 1415: Sent an email to my collaborators on research project #2.
  • 1430: Back to work on my talk for Day 3. Reading some relevant papers, drawing some illustrations, etc.
  • 1600: Two-hour conversation over coffee with an experimentalist from CMS, yet again about triggering, regarding long-lived particles, exotic decays of the Higgs particle, and both at once. Learned a lot of important things about CMS’s plans for the near-term and medium-term future, as well as some of the subtle issues with collecting and analyzing data that are likely to arise in 2015, when the LHC begins running again.

[Why triggering, triggering, triggering? Because if you don’t collect the data in the first place, you can’t analyze it later!  We have to be working on triggering in 2014-2015 before the LHC takes data again in 2015-2018]

  • 1800: An hour to work on the talk again.
  • 1915: Skype conversation with two of my collaborators in research project #1, about a difficult challenge which had been troubling me for over a week. Subtle theoretical issues and heavy duty discussion, but worth it in the end; most of the issues look like they may be resolvable.
  • 2100: Noticed the time and that I hadn’t eaten dinner yet. Went to the CERN cafeteria and ate dinner while answering emails.
  • 2130: More work on the talk for Day 3.
  • 2230: Left CERN. Wrote blog post on the tram to the hotel.
  • 2300: Went back to work in my hotel room.

Day 1 was similarly busy and informative, but had the added feature that I hadn’t slept since the previous day. (I never seem to sleep on overnight flights.) Day 3 is likely to be as busy as Day 2. I’ll be leaving Geneva before dawn on Day 4, heading to a conference.

It’s a hectic schedule, but I’m learning many things!  And if I can help make these huge and crucial experiments more powerful, and give my colleagues a greater chance of a discovery and a reduced chance of missing one, it will all be worth it.

Picture of POSTED BY Matt Strassler

POSTED BY Matt Strassler

ON November 12, 2014

Search

Buy The Book

Reading My Book?

Got a question? Ask it here.

Media Inquiries

For media inquiries, click here.