Tag Archives: press

Questions and Answers About Dark Matter post-LUX

Since the mainstream news media, in their reporting on the new result from the LUX experiment I wrote about Wednesday, insists on confusing the public with their articles and headlines, I thought I’d better write a short post reminding my readers what we do and don’t know about dark matter.

  • Do we know dark matter exists?

Scientists are, collectively, pretty darn sure, though not 100% certain. Certainly something is out there that acts a lot like a dark form of matter (i.e. something that gravitates and clumps, but doesn’t shine, either in visible light or in any other form of electromagnetic waves). There have been some proposals that try to get around dark matter, by modifying gravity, but these haven’t worked that well. Meanwhile the evidence that there really is dark stuff out there that really behaves like matter continues to grow year by year, and every claim that it actually isn’t there (such as this one I wrote about — see the second half of the article) has turned out to be wrong.  Dark matter is needed to explain features of the cosmic microwave background, to explain how galaxies form, to explain why we see certain types of gravitational lensing, etc. etc.  No one alternative can explain all of these things.  And dark matter easily arises in many particle physics theories, so it’s not hard to imagine it might be created in the early universe and be a dominant player today.

  • Do we know dark matter is made from particles (i.e. ultra-microscopic objects with uniform properties)?

No, that’s not certain. Particles would do the job, but that’s not a proof it is made from particles.

  • If dark matter is made from particles, do we know these are Weakly Interacting Massive Particles (WIMPs) — to be precise, particles that interact with the Standard Model via the weak nuclear force or the Higgs force or something else we already know about?

No. Dark matter could be WIMPs. Or dark matter could be made from a very different type of particle called “axions”. Or dark matter could be made from particles that aren’t of either of these types.  This could include particles that only interact with ordinary matter through the force of gravity, which could make them very, very hard to detect.

  • Do most scientists believe dark matter is made from WIMPs? (This was claimed to be true in several news articles.)

As far as I can tell, most experts do not know what to think; some have a bias toward one idea or another, but when pressed admit there’s no way to know. Many scientists think WIMPs are a good candidate, but I’ve never heard anyone say they are the only one.

Partly because they can. Sometimes science involves looking under the lamppost for your keys. You look where you can because you can look there, and you may get lucky — it has happened many times before in history.   That’s fine as long as you remember that’s what you are doing.

Not that WIMPs are the only things that people are looking for. They can also look for axions, and there are experiments doing that search too. Looking for other types of dark matter particles directly is sometimes very difficult. Some of these other types of particles could be found by the experiments at the Large Hadron Collider [LHC] (and people are looking.) Others could be found by experiments such as FERMI and AMS, through the effect of dark matter annihilation to known particles (and people are looking; there’s even a hint, not yet shown to be wrong). Still other possible types of dark matter particles are completely inaccessible to modern experiments, and may remain so for a long time to come.

  • If we don’t know dark matter is particles, or that those particles are WIMPs, then why do the headlines say “dark matter search in final phase” in reference to the new result from LUX, even though LUX is mainly only looking for WIMPs?

Don’t ask me. Ask the editors at CBS and the BBC why their headlines about science are so often inaccurate.

The search for dark matter will end when some type of dark matter is found (or somehow shown convincingly not to exist), not before. The former could happen any day; the latter will not happen anytime soon.  The only thing that is currently approaching its end is the search for WIMPs as the dark matter (and even that search will not, unfortunately, end as soon or as conclusively as we would like.) If WIMPs aren’t found, that just probably means that dark matter is something else on the list I gave you above: some other type of particle, or some other type of thing that isn’t a particle. Or it could mean that dark matter forms clumps, rather than being smoothly distributed through our galaxy, and that we’re unlucky enough to be in an empty zone.  Certainly, if LUX and XENON1T and the other current experiments don’t find anything, we will not be able conclude that dark matter doesn’t exist. Only those who don’t understand the science will attempt to draw that conclusion.

  • So why is the LUX experiment’s result so important?

Well, it’s important, but not amazingly important, because indeed, (a) they didn’t find anything, and (b) it’s not like they ruled out a whole class of possibilities (e.g. WIMPs) all at once. But still, (i) they did rule out a possibility that several other experiments were hinting at, and that’s important, because it settles an outstanding scientific issue,  and (ii) their experiment works very, very well, which is also important, because it means they have a better chance at a discovery in their next round of measurements than they would have otherwise. In short: they deserve and will get a lot of praise and admiration for their work… but their result, unlike the discover of the Higgs particle by the LHC experiments, isn’t Nobel Prize-worthy. And indeed, it’s not getting a front-page spread in the New York Times, for good reason.

Some Weird Twists and Turns

In my last post, I promised you some comments on a couple of other news stories you may have seen.  Promise kept! see below.

But before I go there, I should mention (after questions from readers) an important distinction.  Wednesday’s post was about the simple process by which a Bs meson (a hadron containing a bottom quark and a down[typo] strange anti-quark, or vice versa, along with the usual crowd of gluons and quark/antiquark pairs) decays to a muon and an anti-muon.  The data currently shows nothing out of the ordinary there.  This is not to be confused with another story, loosely related but with crucially different details. There are some apparent discrepancies (as much as 3.7 standard deviations, but only 2.8 after accounting for the look-elsewhere effect) cropping up in details of the intricate process by which a Bd meson (a hadron containing a bottom quark and a down antiquark, or vice versa, plus the usual crowd) decays to a muon, an anti-muon, and a spin-one Kaon (a hadron containing a strange quark and a down anti-quark, or vice versa, plus the usual crowd). The measurements made by the LHCb experiment at the Large Hadron Collider disagree, in some but not all features, with the (technically difficult) predictions made using the Standard Model (the equations used to describe the known particles and forces.)

Don't confuse these two processes!  (Top) The process B_s --> muon + anti-muon, covered in Wednesday's post, agrees with Standard Model predictions.   (Bottom) The process B_d --> muon + anti-muon + K* is claimed to deviate by nearly 3 standard deviations from the Standard Model, but (as far as I am aware) the prediction and associated claim has not yet been verified by multiple groups of people, nor has the measurement been repeated.

Don’t confuse these two processes! (Top) The process B_s –> muon + anti-muon, covered in Wednesday’s post, agrees with Standard Model predictions. (Bottom) The process B_d –> muon + anti-muon + K* is claimed to deviate by nearly 3 standard deviations from the Standard Model, but (as far as I am aware) the prediction and associated claim has not yet been verified by multiple groups of people, nor has the measurement been repeated.

A few theorists have even gone so far as to claim this discrepancy is clearly a new phenomenon — the end of the Standard Model’s hegemony — and have gotten some press people to write (very poorly and inaccurately) about their claim.  Well, aside from the fact that every year we see several 3 standard deviation discrepancies turn out to be nothing, let’s remember to be cautious when a few scientists try to convince journalists before they’ve convinced their colleagues… (remember this example that went nowhere? …) And in this case we have them serving as judge and jury as well as press office: these same theorists did the calculation which disagrees with the data.  So maybe the Standard Model is wrong, or maybe their calculation is wrong.  In any case, you certainly musn’t believe the news article as currently written, because it has so many misleading statements and overstatements as to be completely beyond repair. [For one thing, it’s a case study in how to misuse the word “prove”.] I’ll try to get you the real story, but I have to study the data and the various Standard Model predictions more carefully first before I can do that with complete confidence.

Ok, back to the promised comments: on twists and turns for neutrinos and for muons…   Continue reading

A Couple of Rare Events

Did you know that another name for Minneapolis, Minnesota is “Snowmass”?  Just ask a large number of my colleagues, who are in the midst of a once-every-few-years exercise aimed at figuring out what should be the direction of the U.S. particle physics program.  I quote:

  • The American Physical Society’s Division of Particles and Fields is pursuing a long-term planning exercise for the high-energy physics community. Its goal is to develop the community’s long-term physics aspirations. Its narrative will communicate the opportunities for discovery in high-energy physics to the broader scientific community and to the government.

They are doing so in perhaps the worst of times, when political attacks on science are growing, government cuts to science research are severe, budgets to fund the research programs of particle physicists like me have been chopped by jaw-dropping amounts (think 25% or worse, from last year’s budget to this year’s — you can thank the sequester).. and all this at a moment when the data from the Large Hadron Collider and other experiments are not yet able to point us in an obvious direction for our future research program.  Intelligent particle physicists disagree on what to do next, there’s no easy way to come to consensus, and in any case Congress is likely to ignore anything we suggest.  But at least I hear Minneapolis is lovely in July and August!  This is the first Snowmass workshop that I have missed in a very long time, especially embarrassing since my Ph.D. thesis advisor is one of the conveners.  What can I say?  I wish my colleagues well…!

Meanwhile, I’d like to comment briefly on a few particle physics stories that you’ve perhaps seen in the press over recent days. I’ll cover one of them today — a measurement of a rare process which has now been officially “discovered”, though evidence for it was quite strong already last fall — and address a couple of others later in the week.  After that I’ll tell you about a couple of other stories that haven’t made the popular press… Continue reading

Courses, Forces, and (w)Einstein

This week and next, I’m very busy preparing and delivering a new class (four lectures, 1.5 hours each), for a non-technical audience, on the importance of and the discovery of the Higgs particle.  I’ll be giving it in Western Massachusetts (my old stomping grounds).  If it goes well I may try to give these lectures elsewhere (and please let me know if you know of an institution that might be interested to host them.)   Teaching a new class for a non-technical audience requires a lot of concentration, so I probably won’t get too much writing in over that period.

Still, as many of you requested, I do hope soon to follow up last week’s article (on how particle physicists talk about the strength of the different forces) with an article explaining how both particles and forces arise from fields — a topic I already addressed to some extent in this article, which you may find useful.

Now — a few words on the flap over the suggestion that math Ph.D. and finance expert Eric Weinstein, in his mid-40s, may be the new Albert Einstein.  I’ve kept my mouth shut about this because, simply, how can I comment usefully on something I know absolutely nothing about?  (Admittedly, the modern media, blogosphere and Twitter seem to encourage people to make such comments. Not On This Blog.) There’s no scientific paper for me to read.  There’s no technical scientific talk for me to listen to.  I know nothing about this person’s research.  All I know so far is hearsay.  That’s all almost anyone knows, except for a few of my colleagues at Oxford — trustworthy and experienced physicists, who sound quite skeptical, and certainly asked questions that Weinstein couldn’t answer... which doesn’t mean Weinstein is necessarily wrong, only that his theory clearly isn’t finished yet.  (However, I must admit my expert eye is worried that he didn’t have ready answers to such basic questions.)

What I do know is that the probability that Weinstein is the new Einstein is very low.  Why?  Because I do know a lot about how very smart people with very good ideas fail to be Einstein.  It’s not because they’re dumb or foolish. Continue reading

Not As Painless As They’d Have You Believe

I’m still seeing articles in the news media (here’s one) that say that the majority of Americans think the recent sequester in the US federal budget isn’t affecting them. These articles implicitly suggest that maybe the sequester’s across-the-board cuts aren’t really doing any serious damage.

Well, talk to scientists, and to research universities and government laboratories, if you want to hear about damage.

I haven’t yet got the stomach to write about the gut-wrenching destruction I’m hearing about across my own field of particle physics — essential grants being cut by a quarter, a third, or altogether; researchers being forced to lay off long-standing scientific staff whose expertise, of international importance, is irreplaceable; the very best postdoctoral researchers considering leaving the field because hard-hit universities across the country won’t be hiring many faculty anytime soon… There’s so much happening simultaneously that I’m not sure how I can get my head around it all, much less convey it to you.

But meanwhile, I would like to point you to a strong and strongly-worded article by Eric Klemetti, a well-known blogger and professor who writes at WIRED about volcanoes.  Please read what he wrote, and consider passing it on to those you know.  Everyone needs to understand that the damage that’s being done now across the U.S. scientific landscape, following a period of neglect that extends back many years before the recession, will last a generation or more, if it’s not addressed.

These deep, broad and sudden cuts are a short-sighted way of saving money.  Not only do they waste a lot of money already spent, the long-term cost of the permanent loss of expertise, and of future science and technology, is likely to exceed what we’ll save.  It’s not a good approach to reducing a budget.  So tell your representatives in Congress, and anyone who will listen: Scientific research isn’t excess fat to be chopped off crudely with a cleaver; it’s fuel for the nation’s future, and it needs wiser management than it’s receiving.

Cosmic Conflation: The Higgs, The Inflaton, and Spin

Over the past week or so, there has been unnecessary confusion created about whether or not there’s some relationship between (a) the Higgs particle, recently discovered at the Large Hadron Collider, and (b) the Big Bang, perhaps specifically having to do with the period of “Cosmic Inflation” which is believed by many scientists to explain why the universe is so uniform, relatively speaking. This blurring of the lines between logically separate subjects — let’s call it “Cosmic Conflation” — makes it harder for the public to understand the science, and I don’t think it serves society well.

For the current round of confusion, we may thank professor Michio Kaku, and before him professor Leon Lederman (who may or may not have invented the term “God Particle” but blames it on his publisher), helpfully carried into the wider world by various reporters, as Sean Carroll observed here.

[Aside: in this post I’ll be writing about the Higgs field and the Higgs particle. To learn about the relationship between the field and the particle, you can click here, here, here, or here (listed from shortest to most detailed).]

Let’s start with the bottom line. At the present time, there is no established connection, direct or indirect, between (a) the Higgs field and its particle, on the one hand, and (b) cosmic inflation and the Big Bang on the other hand. Period. Any such connection is highly speculative — not crazy to think about, but without current support from data. Yes, the Higgs field, responsible for the mass of many elementary particles, and without which you and I wouldn’t be here, is a spin-zero field (which means the Higgs particle has zero spin). And yes, the “inflaton field” (the name given to the hypothetical field that, by giving the universe a lot of extra “dark energy” in the early universe, is supposed to have caused the universe to expand at a spectacular rate) is also probably a spin-zero field (in which case the inflaton particle also has zero spin). Well, fish and whales both have tails, and both swim in the sea; yet that doesn’t make them closely related. Continue reading

Why the Higgs Matters, In A Few Sentences

One of the big challenges facing journalists writing about science is to summarize a scientific subject accurately, clearly and succinctly. Sometimes one of the three requirements is sacrificed, and sadly, it is often the first one.

So here is my latest (but surely not last) attempt at an accurate, succinct, and maybe even clear summary of why the Higgs business matters so much.

`True’ Statements about the Higgs

True means “as true as anything compressed into four sentences can possibly be” — i.e., very close to true.  For those who want to know where I’m cutting important corners, a list of caveats will follow at the end of the article.

  • Our very existence depends upon the Higgs field, which pervades the universe and gives elementary particles, including electrons, their masses.  Without mass, electrons could not form atoms, the building blocks of our bodies and of all ordinary matter.
  • Last July’s discovery of the Higgs particle is exciting because it confirms that the Higgs field really exists.  Scientists hope to learn much more about this still-mysterious field through further study of the Higgs particle.

Is that so bad? These lines are almost 100% accurate… I’m sure an experienced journalist can cut and adjust and amend them to make them sound better and more exciting, but are they really too long and unclear to be useable?

Some False Statements about the Higgs Continue reading

Can You Find The Higgs-Like Particle?

Ok, everyone; by now you’ve all learned that the ATLAS experiment at the Large Hadron Collider [LHC] announced recently their measurement of the mass of the Higgs particle, in its decay to two photons, is at 126.6±0.3±0.7 GeV/c²; and meanwhile they measure the mass for apparently the same particle, in its decay to two lepton/anti-lepton pairs, to be 123.5±0.9+0.4-0.2 GeV/c², about 3 GeV/c² lower. “So bizarre”, wrote Michael Moyer at Scientific American,  bandying about the idea that there are two Higgs-like bosons in this data (though, having pointed out the ambulance to you, and neglecting also to mention CMS’s data from November that directly disfavors this interpretation of the ATLAS data, he tells you later that some physics bloggers say you shouldn’t chase it…)

Well.  How bizarre is this 2.7  standard deviation discrepancy really?

At the end of this post are 20 plots showing randomly generated data, in amounts comparable to those used in the current measurement of Higgs decaying to two lepton/anti-lepton pairs (often called “four leptons” for short). [Warning: This certainly hasn’t been done with the level of care needed to match the ATLAS measurement in any precise way; I’ll say a bit more below about the caveats.]

  • In some of the plots, there’s just a random flat background of about 40 events, similar (though not identical) to what arises in the four-lepton Higgs measurement.
  • In some of the plots, there’s a Higgs-like peak of about 20 events — a very sharp peak with a perfect detector, but one which is smoothed out a bit by the inevitable imperfections in a real particle detector.
  • In each plot with a peak, the mass of the Higgs has been chosen to lie somewhere between 122 GeV/c² and 127 GeV/c² [not equally populated].

So:

  1. Can you tell which plots have a Higgs-like signal, and which ones don’t?
  2. In each plot where there is a signal, can you estimate the Higgs mass? Again, in each plot, it lies somewhere between 122 and 127 GeV/c².  You’re not going to get it exactly right — that’s impossible — but do your best, and let’s see what happens.

A couple of additional comments to help you:

  • The resolution on the measurement (i.e., the effect of imperfections in the measurement) is such that with infinite amounts of data, the peak that you’d observe would be a bump whose width, at half the bump’s maximum height, would be about 4 GeV/c².
  • The bins in each plot are 1 GeV/c² wide; the bin just to the right of the number 2 in “125” runs from 125 to 126, the next from 126 to 127, and so forth.

Lastly, a caveat: in the real ATLAS or CMS measurement, the mass of the Higgs is not measured simply by fitting a Gaussian peak over a flat background. So don’t take this exercise too seriously! It’s just a useful learning experience, and nothing more.  What the experiments  actually do is far more sophisticated, accounting for the properties of each event separately!!

Here we go: Good Hunting!  (If your browser has trouble with the figure, try clicking on it.)

[Solution is now available.]

Twenty sets of simulated data, showing number of events versus the “mass” of a putative particle, in GeV/c2. Each contains about 40 events of a non-Higgs-like background that is flat in mass.  Some but not all plots contain a signal which is in the form of a peak, comparable to the current size of the expected Higgs particle signal (about 20 events). In each case the mass of the Higgs is chosen between 122 and 127 GeV/c2.  Experimental imperfections make the full-width of the signal peak at half its maximum about 4 GeV/c2 wide.