Tag Archives: ExoticDecays

Day 2 At CERN

Day 2 of my visit to CERN (host laboratory of the Large Hadron Collider [LHC]) was a pretty typical CERN day for me. Here’s a rough sketch of how it panned out:

  • 1000: after a few chores, arrived at CERN by tram. Worked on my ongoing research project #1. Answered an email about my ongoing research project #2.
  • 1100: attended a one hour talk, much of it historical, by Chris Quigg, one of the famous experts on “quarkonium” (atom-like objects made from a quark or anti-quark, generally referring specifically to charm and bottom quarks). Charmonium (charm quark/antiquark atoms) was discovered 40 years ago this week, in two very different experiments.
  • 1200: Started work on the talk that I am giving on the afternoon of Day 3 to some experimentalists who work at ATLAS. [ATLAS and CMS are the two general-purpose experimental detectors at the LHC; they were used to discover the Higgs particle.] It involves some new insights concerning the search for long-lived particles (hypothesized types of new particles that would typically decay only after having traveled a distance of at least a millimeter, and possibly a meter or more, before they decay to other particles.)
  • 1230: Working lunch with an experimentalist from ATLAS and another theorist, mainly discussing triggering, and other related issues, concerning long-lived particles. Learned a lot about the new opportunities that ATLAS will have starting in 2015.
  • 1400: In an extended discussion with two other theorists, got a partial answer to a subtle question that arose in my research project #2.
  • 1415: Sent an email to my collaborators on research project #2.
  • 1430: Back to work on my talk for Day 3. Reading some relevant papers, drawing some illustrations, etc.
  • 1600: Two-hour conversation over coffee with an experimentalist from CMS, yet again about triggering, regarding long-lived particles, exotic decays of the Higgs particle, and both at once. Learned a lot of important things about CMS’s plans for the near-term and medium-term future, as well as some of the subtle issues with collecting and analyzing data that are likely to arise in 2015, when the LHC begins running again.

[Why triggering, triggering, triggering? Because if you don't collect the data in the first place, you can't analyze it later!  We have to be working on triggering in 2014-2015 before the LHC takes data again in 2015-2018]

  • 1800: An hour to work on the talk again.
  • 1915: Skype conversation with two of my collaborators in research project #1, about a difficult challenge which had been troubling me for over a week. Subtle theoretical issues and heavy duty discussion, but worth it in the end; most of the issues look like they may be resolvable.
  • 2100: Noticed the time and that I hadn’t eaten dinner yet. Went to the CERN cafeteria and ate dinner while answering emails.
  • 2130: More work on the talk for Day 3.
  • 2230: Left CERN. Wrote blog post on the tram to the hotel.
  • 2300: Went back to work in my hotel room.

Day 1 was similarly busy and informative, but had the added feature that I hadn’t slept since the previous day. (I never seem to sleep on overnight flights.) Day 3 is likely to be as busy as Day 2. I’ll be leaving Geneva before dawn on Day 4, heading to a conference.

It’s a hectic schedule, but I’m learning many things!  And if I can help make these huge and crucial experiments more powerful, and give my colleagues a greater chance of a discovery and a reduced chance of missing one, it will all be worth it.

Off to CERN

After a couple of months of hard work on grant writing, career plans and scientific research, I’ve made it back to my blogging keyboard.  I’m on my way to Switzerland for a couple of weeks in Europe, spending much of the time at the CERN laboratory. CERN, of course, is the host of the Large Hadron Collider [LHC], where the Higgs particle was discovered in 2012. I’ll be consulting with my experimentalist and theorist colleagues there… I have many questions for them. And I hope they’ll have many questions for me too, both ones I can answer and others that will force me to go off and think for a while.

You may recall that the LHC was turned off (as planned) in early 2013 for repairs and an upgrade. Run 2 of the LHC will start next year, with protons colliding at an energy of around 13 TeV per collision. This is larger than in Run 1, which saw 7 TeV per collision in 2011 and 8 TeV in 2012.  This increases the probability that a proton-proton collision will make a Higgs particle, which has a mass of 125 GeV/c², by about a factor of 2 ½.  (Don’t try to figure that out in your head; the calculation requires detailed knowledge of what’s inside a proton.) The number of proton-proton collisions per second will also be larger in Run 2 than in Run 1, though not immediately. In fact I would not be surprised if 2015 is mostly spent addressing unexpected challenges. But Run 1 was a classic: a small pilot run in 2010 led to rapid advances in 2011 and performance beyond expectations in 2012. It’s quite common for these machines to underperform at first, because of unforeseen issues, and outperform in the long run, as those issues are solved and human ingenuity has time to play a role. All of which is merely to say that I would view any really useful results in 2015 as a bonus; my focus is on 2016-2018.

Isn’t it a bit early to be thinking about 2016? No, now is the time to be thinking about 2016 triggering challenges for certain types of difficult-to-observe phenomena. These include exotic, unexpected decays of the Higgs particle, or other hard-to-observe types of Higgs particles that might exist and be lurking in the LHC’s data, or rare decays of the W and Z particle, and more generally, anything that involves a particle whose (rest) mass is in the 100 GeV/c² range, and whose mass-energy is therefore less than a percent of the overall proton-proton collision energy. The higher the collision energy grows, the harder it becomes to study relatively low-energy processes, even though we make more of them. To be able to examine them thoroughly and potentially discover something out of place — something that could reveal a secret worth even more than the Higgs particle itself — we have to become more and more clever, open-minded and vigilant.

Higgs Experts: A Small But Important Correction to a Previous Post

I have to admit that this post is really only important for experimentalists interested in searching for non-Standard Model decays of the Higgs particle.  I try to keep these technical posts very rare, but this time I do need to slightly amend a technical point that I made in an article a few weeks ago. Continue reading

Could the Higgs Decay to New Z-like Particles?

Today I’m continuing with my series, begun last Tuesday (click here for more details on the project), on the possibility that the Higgs particle discovered 18 months ago might decay in unexpected ways.

I’ve finished an article describing how we can, with current and with future Large Hadron Collider [LHC] data, look for a Higgs particle decaying to two new spin one particles, somewhat similar to the Z particle, but with smaller mass and much weaker interactions with ordinary matter.  [For decays to spin zero particles, click here.] Just using existing published plots on LHC events with two lepton/anti-lepton pairs, my colleagues and I, in our recent paper, were able to put strong limits on this scenario: for certain masses, decays to the new particles can occur in at most one in a few thousand Higgs particles.  The ATLAS and CMS experiments could certainly do better, perhaps even to the point of making a discovery with existing data, if this process is occurring in nature.

The Higgs could decay to two new spin-one particles, here labelled ZD, which in turn could each produce a lepton/anti-lepton pair.  The resulting signature would be spectacular, but neither ATLAS nor CMS has done a optimizal search for this signal covering the full allowed ZD mass range.

The Higgs could decay to two new spin-one particles, here labelled ZD, which in turn could each produce a lepton/anti-lepton pair (e = electron, μ = muon). The resulting signature would be spectacular, but neither ATLAS nor CMS has yet published an optimal search for this signal across the full allowed ZD mass range.

You might wonder how particle physicists could have missed a particle with a mass lower than that of the Z particle; wouldn’t we already have observed it? A clue as to how this can occur: it took much longer to discover the muon neutrino than the muon, even though the neutrino has a much lower mass. Similarly, it took much longer to discover the Higgs particle than the top quark, even though the Higgs has a lower mass. Why did this happen?

It happened because muon neutrinos interact much more weakly with ordinary matter than do muons, and are therefore much harder to produce, measure and study than are muons. Something similar is true of the Higgs particle compared to the top quark; although the top quark is nearly 50% heavier than the Higgs, the Large Hadron Collider [LHC] produces 20 times as many top quarks and anti-quarks as Higgs particles, and the signature of a top quark is usually more distinctive. So new low-mass particles to which the Higgs particle can perhaps decay could easily have been missed, if they interact much more weakly with ordinary matter than do the Z particle, top quark, bottom quark, muon, etc.

The muon neutrino was discovered not because these neutrinos were directly produced in collisions of ordinary matter but rather because muons were first produced, and these then decayed to muon neutrinos (plus an electron and an electron anti-neutrino).  Similarly, new particles may be discovered not because we produce them directly in ordinary matter collisions, but because, as in the above figure, we first produce a Higgs particle in proton-proton collisions at the LHC, and the Higgs may then in turn decay to them.

I should emphasize that direct searches for these types of new particles are taking place, using both old and new data from a variety of particle physics machines (here’s one example.) But it is often the case that these direct searches are not powerful enough to find the new particles, at least not soon, and therefore they may first show up in unexpected exotic decays of the Higgs… especially since the LHC has already produced a million Higgs particles, most of them at the ATLAS and CMS experiments, with a smaller fraction at LHCb.

I hope that some ATLAS and CMS experimenters are looking for this signal… and that we’ll hear results at the upcoming Moriond conference.

More Examples of Possible Unexpected Higgs Decays

As I explained on Tuesday, I’m currently writing articles for this website that summarize the results of a study, on which I’m one of thirteen co-authors, of various types of decays that the newly-discovered Higgs particle might exhibit, with a focus on measurements that could be done now with 2011-2012 Large Hadron Collider [LHC] data, or very soon with 2015-2018 data.  See Tuesday’s post for an explanation of what this is all about.

On Tuesday I told you I’d created a page summarizing what we know about possible Higgs decays to two new spin-zero particles, which in turn decay to quark pairs or lepton pairs according to our general expectation that heavier particles are preferred in spin-zero-particle decays. A number of theories (including models with more Higgs particles, certain non-minimal supersymmetric models, some Little Higgs models, and various dark matter models) predict this possibility.

Today I’ve added to that page (starting below figure 4) to include possible Higgs decays to two new spin-zero particles which in turn decay to gluon or photon pairs, according to our general expectation that, if the new spin-zero particles don’t interact very strongly with quarks or leptons, then they will typically decay to the force particles, with a rate roughly related to the strengths of the corresponding forces.  While fewer known theories directly predict this possibility compared to the one in the previous paragraph, the ease of looking for Higgs particles decaying to four photons motivates an attempt to do so in current data.

I have a few other classes of Higgs particle exotic decays to cover, so more articles on this subject will follow shortly!

Unexpected Decays of the Higgs Particle: What We Found

A few weeks ago, I reported on the completion of a large project, with which I’ve been personally involved, to investigate how particle physicists at the Large Hadron Collider [LHC] could be searching, not only in the future but even right now, for possible “Exotic Decays” of the newly-discovered Higgs particle .

By the term “exotic decays” (also called “non-Standard-Model [non-SM] Decays”), we mean “decays of this particle that are not expected to occur unless there’s something missing from the Standard Model (the set of equations we use to describe the known elementary particles and forces and the simplest possible type of Higgs field and its particle).”  I’ve written extensively on this website about this possibility (see herehere,  hereherehereherehere and here), though mostly in general terms. In our recent paper on Exotic Decays, we have gone into nitty-gritty detail… the sort of detail only an expert could love.  This week I’m splitting the difference, providing a detailed and semi-technical overview of the results of our work.  This includes organized lists of some of the decays we’re most likely to run across, and suggestions regarding the ones most promising to look for (which aren’t always the most common ones.)

Before I begin, let me again mention the twelve young physicists who were co-authors on this work, all of whom are pre-tenure and several of whom are still not professors yet.  [ When New Scientist reported on our work, they unfortunately didn’t even mention, much less list, my co-authors.] They are (in alphabetical order): David Curtin, Rouven Essig, Stefania Gori, Prerit Jaiswal, Andrey Katz, Tao Liu, Zhen Liu, David McKeen, Jessie Shelton, Ze’ev Surujon, Brock Tweedie, and Yi-Ming Zhong. Continue reading

Our Survey of Exotic Decays of the Higgs is Done

After many months gestation and a difficult labor, a behemoth is born!  Yes, it’s done, finally: our 200 page tome entitled “Exotic Decays of the 125 GeV Higgs Boson“.  Written by thirteen hard-working theoretical particle physicists, this is a paper that examines a wide class of possible decays that our newly found Higgs particle might exhibit, but that would not occur if the Standard Model of particle physics (the equations we use to describe the known elementary particles and forces plus the simplest possible type of Higgs particle) were all there was to see at the Large Hadron Collider [LHC], the giant proton-proton collider outside of Geneva, Switzerland.  

[Non-experts; sorry, but this paper was written for experts, and probably has a minimum of two words of jargon per sentence. I promise you a summary soon.]

Why is looking for unusual and unexpected decays of the Higgs particle so important?  [I’ve written about the possibility of these “exotic” decays before on this website (see herehere,  hereherehereherehere and here).]  Because Higgs particles are sensitive creatures, easily altered, possibly in subtle ways, by interactions with new types of particles that we wouldn’t yet know about from the LHC or our other experiments. (This sensitivity of the Higgs was noted as far back to the early 1980s, though its generality was perhaps only emphasized in the last decade.)  The Higgs particle is very interesting not only on its own, for what it might reveal about the Higgs field (on which our very existence depends), but also as a potential opportunity for the discovery of currently unknown, lightweight particles, to which it might decay.  Such particles might be the keys to unlocking secrets of nature, such as what dark matter is, or maybe even (extreme speculation alert) the naturalness puzzle — very roughly, the puzzle of why the mass of the Higgs particle can be so small compared to the masses of the smallest possible black holes.

The goal of our paper, which is extensive in its coverage (though still not comprehensive — this is a very big subject) is to help our experimental colleagues at ATLAS and CMS, the general purpose experiments at the LHC, decide what to search for in their current (2011-2012) and future (2015-) data, and perhaps assist in their decisions on triggering strategies for the data collecting run that will begin in 2015.  (Sorry, LHCb folks, we haven’t yet looked at decays where you’d have an advantage.) And we hope it will guide theorists too, by highlighting important unanswered questions about how to look for certain types of exotic decays.  Of course the paper has to go through peer review before it is published, but we hope it will be useful to our colleagues immediately. Time is short; 2015 is not very far away.

Although our paper contains some review of the literature, a number of its results are entirely new.  I’ll tell you more about them after I’ve recovered, and probably after most people are back from break in January.  (Maybe for now, as a teaser, I’ll just say that one of the strongest limits we obtained, as an estimate based on reinterpreting published ATLAS and CMS data, is that no more than a few × 10-4 of Higgs particles decay to a pair of neutral spin-one particles with mass in the 20 – 62 GeV/c2 range… and the experimentalists themselves, by re-analyzing their data, could surely do better than we did!)  But for the moment, I’d simply like to encourage my fellow experts, both from the theory side and the experimental side, to take a look… comments are welcome.

Finally, I’d like to congratulate and thank my young colleagues, all of whom are pre-tenure and several of whom are still not professors yet, on their excellent work… it has been a pleasure to collaborate with them.  They led the way, not me.  They are (in alphabetical order): David Curtin, Rouven Essig, Stefania Gori, Prerit Jaiswal, Andrey Katz, Tao Liu, Zhen Liu, David McKeen, Jessie Shelton, Ze’ev Surujon, Brock Tweedie, and Yi-Ming Zhong. They hail from around the world, but they’ve worked together like family… a great example of how our international effort to understand nature’s deep mysteries brings unity of purpose from a diversity of origins.

Final Day of SEARCH 2013

Day 3 of the SEARCH workshop (see here for an introduction and overviews of Day 1 and Day 2) opened with my own talk, entitled “On The Frontier: Where New Physics May Be Hiding”. The issue I was addressing is this:

Even though dozens of different strategies have been used by the experimenters at ATLAS and CMS (the two general purpose experiments at the Large Hadron Collider [LHC]) to look for various types of new particles, there are still many questions that haven’t been asked and many aspects of the data that haven’t been studied. My goal was to point out a few of these unasked or incompletely asked questions, ones that I think are very important for ATLAS and CMS experts to investigate… both in the existing data and also in the data that the LHC will start producing, with a higher energy per proton-proton collision, in 2015.

I covered four topics — I’ll be a bit long-winded here, so just skip over this part if it bores you.

1. Non-Standard-Model (or “exotic”) Higgs Decays: a lightweight Higgs particle, such as the one we’ve recently discovered, is very sensitive to novel effects, and can reveal them by decaying in unexpected ways. One class of possibilities, studied by a very wide range of theorists over the past decade, is that the Higgs might decay to unknown lightweight particles (possibly related in some way to dark matter). I’ve written about these possible Higgs decays a lot (here, here, here, here, here, here and here). This was a big topic of mine at the last SEARCH workshop, and is related to the issue of data parking/delaying. In recent months, a bunch of young theorists (with some limited help and advice from me) have been working to write an overview article, going systematically through the most promising non-Standard-Model decay modes of the Higgs, and studying how easy or difficult it will be to measure them.  Discoveries using the 2011-2012 data are certainly possible!  and at least at CMS, the parked data is going to play an important role.

2. What Variants of “Natural” Supersymmetry (And Related Models) Are Still Allowed By ATLAS and CMS Searches? A natural variant of supersymmetry (see my discussion of “naturalness”=genericity here) is one in which the Higgs particle’s mass and the Higgs field’s value (and therefore the W and Z particles’ masses) wouldn’t change drastically if you were somehow to vary the masses of superpartner particles by small amounts. Such variants tend to have the superpartner particle of the Higgs (called the “Higgsino”) relatively light (a few hundred GeV/c² or below), the superpartner of the top (the “top squark”, with which the Higgs interacts very strongly) also relatively light, and the superpartner of the gluino up in the 1-2 TeV range. If the gluino is heavier than 1.4 TeV or so, then it is too heavy to have been produced during the 2011-2012 LHC run; for variants with such a heavy gluino, we may have to wait until 2015 and beyond to discover or rule them out. But it turns out that if the gluino is light enough (generally a bit above 1 TeV/c²) it is possible to make very general arguments, without resort to the three assumptions that go into the most classic searches for supersymmetry, that almost all such natural and currently accessible variants are now ruled out. I say “almost” because there is at least one class of important exceptions where the case is clearly not yet closed, and for which the gluino mass could be well below 1 TeV/c². [Research to completely characterize the situation is still in progress; I'm working on it with Rutgers faculty member David Shih and postdocs Yevgeny Kats and Jared Evans.]  What we’ve learned is applicable beyond supersymmetry to certain other classes of speculative ideas.

3. Long-Lived Particles: In most LHC studies, it is assumed that any currently unknown particles that are produced in LHC collisions will decay in microscopic times to particles we know about. But it is also possible that one or more new type of particle will decay only after traveling a measurable distance (about 1 millimeter or greater) from the collision point. Searching for such “long-lived” particles (with lifetimes longer than a trillionth of a second!) is complicated; there are many cases to consider, a non-standard search strategy is almost always required, and sometimes specialized trigger strategies are needed. Until recently, only a few studies had been carried out, many with only 2011 data. A very important advance occurred very recently, however, when CMS produced a study, using the full 2011-2012 data set, looking for a long-lived particle that decays to two jets (or to anything that looks to the detector like two jets, which is a bit more general) after traveling up to a large fraction of a meter. The specialized trigger that was used requires about 300 GeV of energy or more to be produced in the proton-proton collision in the form of jets (or things that look like jets to the triggering system.) This is too much for the search to detect a Higgs particle decaying to one or two long-lived particles, because a Higgs particle’s mass-energy [E=mc2 energy] is only 125 GeV, and it is rather rare therefore for 300 GeV of energy in jets-et-al to be observed when a Higgs is produced. But in many speculative theories with long-lived particles, this amount of energy is easily obtained. As a result, this new CMS search clearly wipes out, at one stroke, many variants of a number of speculative models. It will take theorists a little while to fully understand the impact of this new search, but it will be big. Still, it’s by no means the final word.  We need to push harder, improving and broadening the use of these methods, in order that decays of the Higgs itself to long-lived particles can be searched for. This has been done already in a handful of cases (for example if the long-lived particle decays not to jets but to a muon/anti-muon pair or an electron/positron pair, or if the long-lived particle travels several meters before it decays) and in some cases it is already possible to show that at most 1 in 100 to 1000 Higgs particles produce long-lived particles of this type.  For some other cases, the triggers developed for the parked data may be crucial.

4. “Soft” Signals: A frontier that has never been explored, but which theorists have been talking about for some years, is one in which a high-energy process associated with a new particle is typically accompanied by an unusually large number of very low-energy particles (typically photons or hadrons with energy below a few GeV). The high-energy process is mimicked by certain common processes that occur in the Standard Model, and consequently the signal is drowned out, like a child’s voice in a crowded room. But the haze of a large number of low-energy particles that accompanies the signal is rare in the mimicking processes, so by keeping only those collisions that show something like this haze, it becomes possible to throw out the mimicking process most of the time, making the signal stand out — as though, in trying to find the child, one could identify a way to get most of the people to leave the room, reducing the noise enough for the child’s voice to be heard. [For experts: The most classic example of this situation arises in certain types of objects called "quirks", though perhaps there are other examples. For non-experts: I'll explain what quirks are some other time; it's a sophisticated story.]

I was pleased that there was lively discussion on all of these four points; that’s essential for a good workshop.

After me there were talks by ATLAS expert Erez Etzion and CMS’s Steve Wurm, surveying a large number of searches for new particles and other phenomena by the two experiments. One new result that particularly caught my eye was a set of CMS searches for new very heavy particles that decay to pairs of W and/or Z particles.  The W and Z particles go flying outwards with tremendous energy, and form the kind of jet-like objects I mentioned yesterday in the context of Jesse Thaler’s talk on “jet substructure”.  This and a couple of other related measurements are reflective of our moving into a new era, in which detection of jet-like W and Z particles and jet-like top quarks has become part of the standard toolbox of a particle physicist.

The workshop concluded with three hour-long panel discussions:

  1. on the possible interplay between dark matter and LHC research (for instance: how production of “friends” of dark matter [i.e., particles that are somehow related to dark matter particles] may be easier to detect at the LHC than production of dark matter itself)
  2. on the highest priorities for the 2013-2014 shutdown period before the LHC restarts (for instance, conversations between theorists and experimentalists about the trigger strategies that should be used in the next LHC run)
  3. on what the opportunities of the 2015-2020 run of the LHC are likely to be, and what their implications may be (for instance, the ability to finally reach the 3 TeV/c2 mass range for the types of particles one would expect in the so-called “Randall-Sundrum” class of extra-dimensions models; the opportunities to look for very rare Higgs, top and W decays; and the potential to complete the program I outlined above of ruling out all but a very small class of natural variants of supersymmetry.)

All in all, a useful workshop — but its true value will depend on how much we all follow up on what we discussed.