Tag Archives: DoingScience

Brane Waves

The first day of the conference celebrating theoretical physicist Joe Polchinski (see also yesterday’s post) emphasized the broad impact of his research career.  Thursday’s talks, some on quantum gravity and others on quantum field theory, were given by

  • Juan Maldacena, on his latest thinking on the relation between gravity, geometry and the entropy of quantum entanglement;
  • Igor Klebanov, on some fascinating work in which new relations have been found between some simple quantum field theories and a very poorly understood and exotic theory, known as Vassiliev theory (a theory that has more fields than a field theory but fewer than a string theory);
  • Raphael Bousso, on his recent attempts to prove the so-called “covariant entropy bound”, another relation between entropy and geometry, that Bousso conjectured over a decade ago;
  • Henrietta Elvang, on the resolution of a puzzle involving the relation between a supersymmetric field theory and a gravitational description of that same theory;
  • Nima Arkani-Hamed, about his work on the amplituhedron, a set of geometric objects that allow for the computation of particle scattering in various quantum field theories (and who related how one of Polchinski’s papers on quantum field theory was crucial in convincing him to stay in the field of high-energy physics);
  • Yours truly, in which I quickly reviewed my papers with Polchinski relating string theory and quantum field theory, emphasizing what an amazing experience it is to work with him; then I spoke briefly about my most recent Large Hadron Collider [LHC] research (#1,#2), and concluded with some provocative remarks about what it would mean if the LHC, having found the last missing particle of the Standard Model (i.e. the Higgs particle), finds nothing more.

The lectures have been recorded, so you will soon be able to find them at the KITP site and listen to any that interest you.

There were also two panel discussions. One was about the tremendous impact of Polchinski’s 1995 work on D-branes on quantum field theory (including particle physics, nuclear physics and condensed matter physics), on quantum gravity (especially through black hole physics), on several branches of mathematics, and on string theory. It’s worth noting that every talk listed above was directly or indirectly affected by D-branes, a trend which will continue in most of Friday’s talks.  There was also a rather hilarious panel involving his former graduate students, who spoke about what it was like to have Polchinski as an advisor. (Sorry, but the very funny stories told at the evening banquet were not recorded. [And don't ask me about them, because I'm not telling.])

Let me relate one thing that Eric Gimon, one of Polchinski’s former students, had to say during the student panel. Gimon, a former collaborator of mine, left academia some time ago and now works in the private sector. When it was his turn to speak, he asked, rhetorically, “So, how does calculating partition functions in K3 orientifolds” (which is part of what Gimon did as a graduate student) “prepare you for the real world?” How indeed, you may wonder. His answer: “A sense of pertinence.” In other words, an ability to recognize which aspects of a puzzle or problem are nothing but distracting details, and which ones really matter and deserve your attention. It struck me as an elegant expression of what it means to be a physicist.

Wednesday: Sean Carroll & I Interviewed Again by Alan Boyle

Today, Wednesday December 4th, at 8 pm Eastern/5 pm Pacific time, Sean Carroll and I will be interviewed again by Alan Boyle on “Virtually Speaking Science”.   The link where you can listen in (in real time or at your leisure) is

http://www.blogtalkradio.com/virtually-speaking-science/2013/12/05/alan-boyle-matt-strassler-sean-carroll

What is “Virtually Speaking Science“?  It is an online radio program that presents, according to its website:

  • Informal conversations hosted by science writers Alan Boyle, Tom Levenson and Jennifer Ouellette, who explore the explore the often-volatile landscape of science, politics and policy, the history and economics of science, science deniers and its relationship to democracy, and the role of women in the sciences.

Sean Carroll is a Caltech physicist, astrophysicist, writer and speaker, blogger at Preposterous Universe, who recently completed an excellent and now prize-winning popular book (which I highly recommend) on the Higgs particle, entitled “The Particle at the End of the Universe“.  Our interviewer Alan Boyle is a noted science writer, author of the book “The Case for Pluto“, winner of many awards, and currently NBC News Digital’s science editor [at the blog  "Cosmic Log"].

Sean and I were interviewed in February by Alan on this program; here’s the link.  I was interviewed on Virtually Speaking Science once before, by Tom Levenson, about the Large Hadron Collider (here’s the link).  Also, my public talk “The Quest for the Higgs Particle” is posted in their website (here’s the link to the audio and to the slides).

The Fast and Glamorous Life of a Theoretical Physicist

Ah, the fast-paced life of a theoretical physicist!  I just got done giving a one-hour talk in Rome, given at a workshop for experts on the ATLAS experiment, one of the two general purpose experiments at the Large Hadron Collider [LHC]. Tomorrow morning I’ll be talking with a colleague at the Rutherford Appleton Lab in the U.K., an expert from CMS (the other general purpose experiment at the LHC). Then it’s off to San Francisco, where tomorrow (Wednesday, 5 p.m. Pacific Time, 8 p.m. Eastern), at the Exploratorium, I’ll be joined by Caltech’s Sean Carroll, who is an expert on cosmology and particle physics and whose book on the Higgs boson discovery just won a nice prize, and we’ll be discussing science with science writer Alan Boyle, as we did back in February. [You can click here to listen in to Wednesday's event.]  Next, on Thursday I’ll be at a meeting hosted in Stony Brook, on Long Island in New York State, discussing a Higgs-particle-related scientific project with theoretical physics colleagues as far flung as Hong Kong.  On Friday I shall rest.

“How does he do it?”, you ask. Hey, a private jet is a wonderful thing! Simple, convenient, no waiting at the gate; I highly recommend it! However — I don’t own one. All I have is Skype, and other Skype-like software.  My words will cross the globe, but my body won’t be going anywhere this week.

We should not take this kind of communication for granted! If the speed of light were 186,000 miles (300,000 kilometers) per hour, instead of 186,000 miles (300,000 kilometers) per second, ordinary life wouldn’t obviously change that much, but we simply couldn’t communicate internationally the way we do. It’s 4100 miles (6500 kilometers) across the earth’s surface to Rome; light takes about 0.02 seconds to travel that distance, so that’s the fastest anything can travel to make the trip. But if light traveled 186,000 miles per hour, then it would take over a minute for my words to reach Rome, making conversation completely impossible. A back-and-forth conversation would be difficult even between New York and Boston — for any signal to travel the 200 miles (300 kilometers) would require four seconds, so you’d be waiting for 8 seconds to hear the other person answer your questions. We’d have similar problems — slightly less severe — if the earth were as large as the sun.  And someday, as we populate the solar system, we’ll actually have this problem.

So think about that next time you call or Skype or otherwise contact a distant friend or colleague, and you have a conversation just as though you were next door, despite your being separated half-way round the planet. It’s a small world (and a fast one) after all.

Why Scientists Can Be Happy Even When They Find Nothing

Appropriate for General Readership

Last week, the LUX experiment reported its results in its search for the dark matter that (speaking roughly) makes up 25% of the stuff in the universe (see here for the first report and here for some Q&A).  [See this article, specifically the "Dark Matter Underfoot" section, for some nontechnical discussion about how experiments like LUX work.]  Shortly thereafter, a number of articles in the media made a big deal out of the fact that, simultaneously,

  1. the LUX experiment did not find evidence of dark matter
  2. yet scientists at the LUX experiment appeared to be quite happy

as though this was contradictory and mystifying. Actually, if you think about it carefully, this is perfectly normal and typical, and not the slightest bit surprising. But to make sense of it, you do also have to understand the levels of “happiness” that the LUX scientists are expressing.

The point is that whenever scientists do an experiment whose goal is to look for something whose precise details aren’t known, there are two stories running simultaneously:

  1. The scientists are trying to do the best experiment that they can, in order that their search be as thorough and as expansive as it could possibly be with the equipment that they have available.
  2. The scientists are hoping that the thing that they are looking for (or perhaps something else equally or more interesting) will be within reach of their search.

Notice that humans have control over the first story. The wiser they are at designing their experiment, and the more skillful they are in carrying it out, the more effective their search will be. But they have no control over the second story. Whether their prey lies within their reach, or whether it lies far beyond, requiring the technology of the distant future, is up to nature, not humans. In short, story #1 is about skill and talent, but story #2 is about luck. Even a great experiment can’t do the impossible, and even one that doesn’t work quite as well as it was supposed to can be fortunate.

Of course, there is some interplay between the stories. A disaster in story #1 precludes a happy ending in story #2; if the experiment doesn’t work, there won’t be any discoveries! And the better is the outcome in story #1, the more probable is a success in story #2; a more thorough search is more likely to get lucky.

The LUX researchers, in order to make a discovery, have to be lucky in several ways, as I described on Thursday.

  • Dark matter (at least some of it) has to be made from particles which are heavier than protons and have uniform properties;
  • These particles have to be rather smoothly distributed through the Milky Way galaxy, rather than bound up in clumps the way ordinary matter is, so that some of them are likely, just by chance, to be passing through the earth;
  • And they have to interact with ordinary matter at a rate that is not insanely small — no less than a millionth of the interaction rate of high-energy neutrinos with ordinary matter.

None of these things is necessarily true, given what we know about dark matter from our measurements of the heavens. And if any one of them is false, no detector similar to LUX will ever find dark matter; we’ll need other methods, some of which are already under way.

Now, in this context, what’s the worst thing that could happen to a group of scientists who’ve built an experiment? The worst thing that could happen is that after spending several years preparing the experiment, they find it simply doesn’t work. This can happen! These are very difficult experiments requiring very special and remarkable techniques, and every now and then, in the history of such experiments, an unexpected problem arises that can’t be solved without a complete redesign, which is usually too expensive and in any case means years of delay. Or something just explodes and ruins the experiment. Something like this is extremely depressing and often deeply embarrassing.

So if instead the experiment works, the scientists who designed, built and ran it are of course very relieved and reasonably happy. And if, because of a combination of hard work and cleverness, it works better than they expected and as well as they could have hoped, they’re of course enormously pleased, and proud of their work!

Now what could make them happier still — even ecstatic, to the point of staying up late drinking entire bottles of champagne? A discovery, of course. Discovering what they’re looking for, or perhaps something they weren’t even looking for, if it is truly novel and of fundamental importance.  If that happens, then they won’t care as much if their experiment worked better than expected… because, if you’re an experimental scientist, there’s nothing, nothing at all, better than discovering something new about nature.

So with this perspective, I think the LUX scientists’ emotions (as conveyed during his talk by Richard Gaitskell of Brown University, the project’s leader) are actually very easy to understand. They are very happy because their experiment works better than they expected and as well as they hoped… maybe even better than that. For this, they get the high respect and admiration of their colleagues. But make no mistake: they’d certainly be a lot happier — overjoyed and humbled — if they’d discovered dark matter. For that, they’d get a place in the history books, major prizes (perhaps a Nobel, if the Nobel Committee could figure out who to give it to), lasting fame, and the almost unimaginable feeling of having uncovered something about nature that no human previously knew, and that (barring a complete collapse of civilization) will never be forgotten. So yes, they’re happy. But not nearly as happy as can be. They’re frustrated, too, just like the rest of us, that nothing’s shown up yet.

However, they’re also hopeful. Since they’ve built such a good experiment, and since they’ve only run it for such a short time so far, they’ll have another very reasonable shot at finding dark matter when they run it for about a full year, in 2014. Not only will they run it longer, they’ll surely also learn, from their experience so far, to be smarter about how they run it. So expect, at the very least, powerful new limits on dark matter from them in eighteen months or so. And maybe, just maybe, something more.

The Twists and Turns of Hi(gg)story

In sports, as in science, there are two very different types of heroes.  There are the giants who lead the their teams and their sport, winning championships and accolades, for years, and whose fame lives on for decades: the Michael Jordans, the Peles, the Lou Gherigs, the Joe Montanas. And then there are the unlikely heroes, the ones who just happen to have a really good day at a really opportune time; the substitute player who comes on the field for an injured teammate and scores the winning goal in a championship; the fellow who never hits a home run except on the day it counts; the mediocre receiver who turns a short pass into a long touchdown during the Super Bowl.  We celebrate both types, in awe of the great ones, and in amused pleasure at the inspiring stories of the unlikely ones.

In science we have giants like Newton, Darwin, Boyle, Galileo… The last few decades of particle physics brought us a few, such as Richard Feynman and Ken Wilson, and others we’ll meet today.  Many of these giants received Nobel Prizes.   But then we have the gentlemen behind what is commonly known as the Higgs particle — the little ripple in the Higgs field, a special field whose presence and properties assure that many of the elementary particles of nature have mass, and without which ordinary matter, and we ourselves, could not exist.  Following discovery of this particle last year, and confirmation that it is indeed a Higgs particle, two of them, Francois Englert and Peter Higgs, have been awarded the 2013 Nobel Prize in physics.  Had he lived to see the day, Robert Brout would have been the third.

My articles Why The Higgs Particle Matters and The Higgs FAQ 2.0; the particles of nature and what they would be like if the Higgs field were turned off; link to video of my public talk entitled The Quest for the Higgs Boson; post about why Higgs et al. didn’t win the 2012 Nobel prize, and about how physicists became convinced since then that the newly discovered particle is really a Higgs particle;

The paper written by Brout and Englert; the two papers written by Higgs; the paper written by Gerald Guralnik, Tom Kibble and Carl Hagen; these tiny little documents, a grand total of five and one half printed pages — these were game-winning singles in the bottom of the 9th, soft goals scored with a minute to play, Hail-Mary passes by backup quarterbacks — crucial turning-point papers written by people you would not necessarily have expected to find at the center of things.  Brout, Englert, Higgs, Guralnik, Kibble and Hagen are (or rather, in Brout’s case, sadly, were) very fine scientists, intelligent and creative and clever, and their papers, written in 1964 when they were young men, are imperfect but pretty gems.  They were lucky: very smart but not extraordinary physicists who just happened to write the right paper at the right time. In each case, they did so

History in general, and history of science in particular, is always vastly more complex than the simple stories we tell ourselves and our descendants.  Making history understandable in a few pages always requires erasing complexities and subtleties that are crucial for making sense of the past.  Today, all across the press, there are articles explaining incorrectly what Higgs and the others did and why they did it and what it meant at the time and what it means now.  I am afraid I have a few over-simplified articles of my own. But today I’d like to give you a little sense of the complexities, to the extent that I, who wasn’t even alive at the time, can understand them.  And also, I want to convey a few important lessons that I think the Hi(gg)story can teach both experts and non-experts.  Here are a couple to think about as you read:

1. It is important for theoretical physicists, and others who make mathematical equations that might describe the world, to study and learn from imaginary worlds, especially simple ones.  That is because

  • 1a. one can often infer general lessons more easily from simple worlds than from the (often more complicated) real one, and
  • 1b. sometimes an aspect of an imaginary world will turn out to be more real than you expected!

2. One must not assume that research motivated by a particular goal depends upon the achievement of that goal; even if the original goal proves illusory, the results of the research may prove useful or even essential in a completely different arena.

My summary today is based on a reading of the papers themselves, on comments by John Iliopoulos, and on a conversation with Englert, and on reading and hearing Higgs’ own description of the episode.

The story is incompletely but perhaps usefully illustrated in the figure below, which shows a cartoon of how four important scientific stories of the late 1950s and early 1960s came together. They are:

  1. How do superconductors (materials that carry electricity without generating heat) really work?
  2. How does the proton get its mass, and why are pions (the lightest hadrons) so much lighter than protons?
  3. Why do hadrons behave the way they do; specifically, as suggested by J.J. Sakurai (who died rather young, and after whom a famous prize is named), why are there photon-like hadrons, called rho mesons, that have mass?
  4. How does the weak nuclear force work?  Specifically, as suggested by Schwinger and developed further by his student Glashow, might it involve photon-like particles (now called W and Z) with mass?

These four questions converged on a question of principle: “how can mass be given to particles?”, and the first, third and fourth were all related to the specific question of “how can mass be given to photon-like particles?’’  This is where the story really begins.  [Almost everyone in the story is a giant with a Nobel Prize, indicated with a parenthetic (NPyear).]

My best attempt at a cartoon history...

My best attempt at a cartoon history…

In 1962, Philip Anderson (NP1977), an expert on (among other things) superconductors, responded to suggestions and questions of Julian Schwinger (NP1965) on the topic of photon-like particles with mass, pointing out that a photon actually gets a mass inside a superconductor, due to what we today would identify as a sort of “Higgs-type’’ field made from pairs of electrons.  And he speculated, without showing it mathematically, that very similar ideas could apply to empty space, where Einstein’s relativity principles hold true, and that this could allow elementary photon-like particles in empty space to have mass, if in fact there were a kind of Higgs-type field in empty space.

In all its essential elements, he had the right idea.  But since he didn’t put math behind his speculation, not everyone believed him.  In fact, in 1964 Walter Gilbert (NP1980 for chemistry, due to work relevant in molecular biology — how’s that for a twist?) even gave a proof that Anderson’s idea couldn’t work in empty space!

But Higgs immediately responded, arguing that Gilbert’s proof had an important loophole, and that photon-like particles could indeed get a mass in empty space.

Meanwhile, about a month earlier than Higgs, and not specifically responding to Anderson and Gilbert, Brout and Englert wrote a paper showing how to get mass for photon-like particles in empty space. They showed this in several types of imaginary worlds, using techniques that were different from Higgs’ and were correct though perhaps not entirely complete.

A second paper by Higgs, written before he was aware of Brout and Englert’s work, gave a simple example, again in an imaginary world, that made all of this much easier to understand… though his example wasn’t perhaps entirely convincing, because he didn’t show much detail.  His paper was followed by important theoretical clarifications from Guralnik, Hagen and Kibble that assured that the Brout-Englert and Higgs papers were actually right.  The combination of these papers settled the issue, from our modern perspective.

And in the middle of this, as an afterthought added to his second paper only after it was rejected by a journal, Higgs was the first person to mention something that was, for him and the others, almost beside the point — that in the Anderson-Brout-Englert-Higgs-Guralnik-Hagen-Kibble story for how photon-like particles get a mass, there will also  generally be a spin-zero particle with a mass: a ripple in the Higgs-type field, which today we call a Higgs-type particle.  Not that he said very much!   He noted that spin-one (i.e. photon-like) and spin-zero particles would come in unusual combinations.  (You have to be an expert to even figure out why that counts as predicting a Higgs-type particle!)  Also he wrote the equation that describes how and why the Higgs-type particle arises, and noted how to calculate the particle’s mass from other quantities.  But that was it.  There was nothing about how the particle would behave, or how to discover it in the imaginary worlds that he was considering;  direct application to experiment, even in an imaginary world, wasn’t his priority in these papers.

Equation (2b) is the first time the Higgs particle explicitly appears in its modern form

In his second paper, Higgs considers a simple imaginary world with just a photon-like particle and a Higgs-type field.  Equation 2b is the first place the Higgs-type particle explicitly appears in the context of giving photon-like particles a mass (equation 2c).  From Physical Review Letters, Volume 13, page 508

About the “Higgs-type” particle, Anderson says nothing; Brout and Englert say nothing; Guralnik et al. say something very brief that’s irrelevant in any imaginable real-world application.  Why the silence?  Perhaps because it was too obvious to be worth mentioning?  When what you’re doing is pointing out something really “important’’ — that photon-like particles can have a mass after all — the spin-zero particle’s existence is so obvious but so irrelevant to your goal that it hardly deserves comment.  And that’s indeed why Higgs added it only as an afterthought, to make the paper a bit less abstract and a bit easier for  a journal to publish.  None of them could have imagined the hoopla and public excitement that, five decades later, would surround the attempt to discover a particle of this type, whose specific form in the real world none of them wrote down.

In the minds of these authors, any near-term application of their ideas would probably be to hadrons, perhaps specifically Sakurai’s theory of hadrons, which in 1960 predicted the “rho mesons”, which are photon-like hadrons with mass, and had been discovered in 1961.  Anderson, Brout-Englert and Higgs specifically mention hadrons at certain moments. But none of them actually considered the real hadrons of nature, as they were just trying to make points of principle; and in any case, the ideas that they developed did not apply to hadrons at all.  (Well, actually, that’s not quite true, but the connection is too roundabout to discuss here.)  Sakurai’s ideas had an element of truth, but fundamentally led to a dead end.  The rho mesons get their mass in another way.

Meanwhile, none of these people wrote down anything resembling the Higgs field which we know today — the one that is crucial for our very existence — so they certainly didn’t directly predict the Higgs particle that was discovered in 2012.   It was Steven Weinberg (NP1979) in 1967, and Abdus Salam (NP1979) in 1968, who did that.  (And it was Weinberg who stuck Higgs’ name on the field and particle, so that everyone else was forgotten.) These giants combined

  • the ideas of Higgs and the others about how to give mass to photon-like particles using a Higgs-type field, with its Higgs-type particle as a consequence…
  • …with the 1960 work of Sheldon Glashow (NP1979), Schwinger’s student, who like Schwinger proposed the weak nuclear force was due to photon-like particles with mass,…
  • …and with the 1960-1961 work of Murray Gell-Man (NP1969) and Maurice Levy and of Yoichiro Nambu (NP2008) and Giovanni Jona-Lasinio, who showed how proton-like or electron-like particles could get mass from what we’d now call Higgs-type fields.

This combination gave the first modern quantum field theory of particle physics: a set of equations that describe the weak nuclear and electromagnetic forces, and show how the Higgs field can give the W and Z particles and the electron their masses. It is the primitive core of what today we call the Standard Model of particle physics.  Not that anyone took this theory seriously, even Weinberg.  Most people thought quantum field theories of this type were mathematically inconsistent — until in 1971 Gerard ‘t Hooft (NP1999) proved they were consistent after all.

The Hi(gg)story is populated with giants.  I’m afraid my attempt to tell the story has giant holes to match.  But as far as the Higgs particle that was discovered last year at the Large Hadron Collider, the unlikely heroes of the story are the relatively ordinary scientists who slipped in between the giants and actually scored the goals.

Freeman Dyson, 90, Still Disturbing the Universe

I spent the last two days at an extraordinary conference, “Dreams of Earth and Sky”, celebrating the life and career of an extraordinary man, one of the many fascinating scientists whom I have had the good fortune to meet. I am referring to Freeman Dyson, professor at the Institute for Advanced Study (IAS), whose career has spanned so many subfields of science and beyond that the two-day conference simply wasn’t able to represent them all.

DysonPhoto

The event, held on the campus of the IAS, marked Dyson’s 90th year on the planet and his 60th year as a professor. (In fact his first stay at the IAS was a few years even earlier than that.) The IAS was then still a young institution; Albert Einstein, John Von Neumann, Kurt Gödel and J. Robert Oppenheimer were among the faculty. Dyson’s most famous work in my own field was on the foundations of the quantum field theory of the electromagnetic force, “quantum electrodynamics”, or “QED”.  His work helped explain its mathematical underpinnings and clarify how it worked, and so impressed Oppenheimer that he got Dyson a faculty position at the IAS. This work was done at a very young age.  By the time I arrived to work at the IAS in 1996, Dyson had officially retired, but was often in his office and involved in lunchtime conversations, mostly with the astronomers and astrophysicists, which is where a lot of his late career work has been centered.

Retirement certainly hasn’t stopped Dyson’s activity. His mind seems to be ageless; he is spry, attentive, sharp, and still doing science and writing about it and other topics. When I went up to congratulate him, I was surprised that he not only remembered who I was, he remembered what I had been working on in 1992, when, as an unknown graduate student on the other coast, I had sent him a paper I had written.

By the way, it’s somewhat bizarre that Dyson never won a Nobel Prize.  Arguably it is part of the nature of the awarding process, which typically rewards a specific, deep line of research, and not a polymath whose contributions are spread widely.  Just goes to show that you have to look at the content of a person’s life and work, not the prizes that someone thought fit to award to him or her.  Still, he has his share: Dannie Heineman Prize for Mathematical Physics 1965; German Physical Society, Max Planck Medal 1969; Harvey Prize 1977; Wolf Foundation Prize in Physics 1981; American Association of Physics Teachers, Oersted Medal 1991; Enrico Fermi Award 1995; Templeton Prize for Progress in Religion 2000; Henri Poincaré Prize 2012.

The thirteen talks and several brief comments given at the conference, all of which in one way or another related to Dyson’s work, were organized into sessions on mathematics, on physics and chemistry, on astronomy and astrobiology, and on public affairs. All of the speakers were eminent in their fields, and I encourage you to explore their websites and writings, some of which were controversial, all of which were interesting. For non-scientists, I especially recommend Stanford Professor Emeritus Sid Drell’s extremely interesting talk about nuclear disarmament (which he’s been working towards for decades), and a thought-provoking if disconcertingly slick presentation by Dr. Amory Lovins of the Rocky Mountain Institute on what he sees as a completely realistic effort, already underway, to wean the United States of its addiction to oil — with no net cost. Those with a small to moderate amount of scientific background may especially enjoy MIT Professor Sara Seager’s work on efforts to discover and study planets beyond our own solar system, Texas Professor Bill Press’s proposal for how to rethink the process of drug trials and approvals in the age of electronic patient records, Sir Martin Rees’s views on the state of our understanding of the universe, and Caltech’s Joseph Kirschvink’s contention that scientific evidence tends to favor the notion that life on this planet most likely started on Mars.

But really, if you haven’t heard about all the different things Freeman Dyson has done, or read any of his writings, you should not miss the opportunity. Start here and here, and enjoy!

Many happy returns, Professor Dyson; you have been an inspiration and a role model for several generations of young scientists, and may you have many more happy and healthy years to come!

Who Learns the Most in a Science Class?

I’m back, after two weeks of teaching non-experts in a short course covering particle physics, the Higgs field, and the discovery of the Higgs particle.  (The last third of the course, on the politics and funding of particle physics and science more broadly, is wisely being taught by a more disinterested party, an economist with some undergraduate physics background.)  And I’ve been reminded: One of the great joys (and great secrets) of teaching is that the teacher always learns more than the students do.

At least, this is generally true for a new class that the teacher hasn’t taught before. In many university physics departments, and elsewhere, there is an informal requirement that professors teach a class no more than three years in a row. [Let us ignore for the moment that all of this will be overturned in the coming years by the on-line revolution; we can discuss the possible consequences later.] After the third year, they are expected to switch and teach something else. Now you might think that the benefits of the division of labor would suggest a different approach; after all, shouldn’t each professor perfect a course, become the expert, and teach it year in, year out? This usually doesn’t work (though there are exceptions) because each professor’s interaction with a new course has a natural life cycle. Continue reading

Courses, Forces, and (w)Einstein

This week and next, I’m very busy preparing and delivering a new class (four lectures, 1.5 hours each), for a non-technical audience, on the importance of and the discovery of the Higgs particle.  I’ll be giving it in Western Massachusetts (my old stomping grounds).  If it goes well I may try to give these lectures elsewhere (and please let me know if you know of an institution that might be interested to host them.)   Teaching a new class for a non-technical audience requires a lot of concentration, so I probably won’t get too much writing in over that period.

Still, as many of you requested, I do hope soon to follow up last week’s article (on how particle physicists talk about the strength of the different forces) with an article explaining how both particles and forces arise from fields — a topic I already addressed to some extent in this article, which you may find useful.

Now — a few words on the flap over the suggestion that math Ph.D. and finance expert Eric Weinstein, in his mid-40s, may be the new Albert Einstein.  I’ve kept my mouth shut about this because, simply, how can I comment usefully on something I know absolutely nothing about?  (Admittedly, the modern media, blogosphere and Twitter seem to encourage people to make such comments. Not On This Blog.) There’s no scientific paper for me to read.  There’s no technical scientific talk for me to listen to.  I know nothing about this person’s research.  All I know so far is hearsay.  That’s all almost anyone knows, except for a few of my colleagues at Oxford — trustworthy and experienced physicists, who sound quite skeptical, and certainly asked questions that Weinstein couldn’t answer... which doesn’t mean Weinstein is necessarily wrong, only that his theory clearly isn’t finished yet.  (However, I must admit my expert eye is worried that he didn’t have ready answers to such basic questions.)

What I do know is that the probability that Weinstein is the new Einstein is very low.  Why?  Because I do know a lot about how very smart people with very good ideas fail to be Einstein.  It’s not because they’re dumb or foolish. Continue reading